Current Trends in Symmetric Polynomials with their Applications |
Autore | Kim Taekyun |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
Descrizione fisica | 1 electronic resource (238 p.) |
Soggetto non controllato |
generalized Laguerre
central complete Bell numbers rational polynomials Changhee polynomials of type two Euler polynomials generalized Laguerre polynomials Hermite conjecture Legendre the degenerate gamma function trivariate Lucas polynomials perfectly matched layer third-order character Euler numbers two variable q-Berstein operator entropy production hypergeometric function q-Bernoulli numbers q-Bernoulli polynomials symmetry group Bernoulli polynomials Fibonacci polynomials central incomplete Bell polynomials Chebyshev polynomials convolution sums Lucas polynomials Jacobi the modified degenerate Laplace transform q-Volkenborn integral on ?p and fourth kinds two variable q-Berstein polynomial the modified degenerate gamma function two variable q-Bernstein operators reduction method identity elementary and combinatorial methods generalized Bernoulli polynomials and numbers attached to a Dirichlet character ? explicit relations recursive sequence Fubini polynomials p-adic integral on ?p generating functions q-Euler number acoustic wave equation congruence trivariate Fibonacci polynomials stochastic thermodynamics fermionic p-adic integrals Laguerre polynomials fluctuation theorem Bernoulli numbers and polynomials w-torsion Fubini polynomials non-equilibrium free energy hypergeometric functions 1F1 and 2F1 recursive formula Chebyshev polynomials of the first second central complete Bell polynomials Apostol-type Frobenius–Euler polynomials sums of finite products q-Euler polynomial symmetric identities stability fermionic p-adic q-integral on ?p Gegenbauer polynomials continued fraction thermodynamics of information well-posedness fermionic p-adic integral on ?p catalan numbers classical Gauss sums three-variable Hermite polynomials q-Changhee polynomials Catalan numbers two variable q-Bernstein polynomials q-Euler polynomials analytic method representation mutual information Fibonacci Legendre polynomials Gegenbauer generalized Bernoulli polynomials and numbers of arbitrary complex order Lucas elementary method new sequence third the degenerate Laplace transform computational formula operational connection sums of finite products of Chebyshev polynomials of the third and fourth kinds Changhee polynomials linear form in logarithms |
ISBN | 3-03921-621-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910367752803321 |
Kim Taekyun
![]() |
||
MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Differential and Difference Equations : A Themed Issue Dedicated to Prof. Hari M. Srivastava on the Occasion of his 80th Birthday |
Autore | Ntouyas Sotiris K |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (372 p.) |
Soggetto topico |
Research & information: general
Mathematics & science |
Soggetto non controllato |
generating functions
functional equations partial differential equations special numbers and polynomials Bernoulli numbers Euler numbers Stirling numbers Bell polynomials Cauchy numbers Poisson-Charlier polynomials Bernstein basis functions Daehee numbers and polynomials combinatorial sums binomial coefficients p-adic integral probability distribution Mittag-Leffler function spectrum eigenvalue fractional derivative q-Homotopy analysis transform method Natural decomposition method Whitham–Broer–Kaup equations Caputo derivative liner recursions convolution formulas Gegenbauer polynomials Humbert polynomials classical polynomials in several variables classical number sequences Riemann–Liouville fractional integral Mittag–Leffler function Babenko’s approach generalized Abel’s integral equation harmonic functions janowski functions starlike functions extreme points subordination ocillation higher-order differential equations p-Laplacian equations rumor spreading model white noise stochastic differential equations asymptotic mean square stability stability in probability linear matrix inequality Co-infection of HIV-TB equilibrium point reproduction number stability analysis backward bifurcation harmonic univalent functions generalized linear operator differential operator Salagean operator coefficient bounds essential maps coincidence points topological principles selections univalent function analytic function unit disk integro-differential equation mixed type equation spectral parameters integral conditions solvability exponential stability linear skew-product semiflows Lyapunov functions fractional differential equations fractional differential inclusions existence fixed point theorems fuzzy functions time scales Hukuhara difference generalized nabla Hukuhara derivative fuzzy nabla integral caputo fractional derivative multi-term fractional differential equations fixed point difference equations periodicity character nonexistence cases of periodic solutions hypersingular integral equations iterative projection method Lyapunov stability theory MADE eigenfunction convergence Fourier transform singular Cauchy problem asymptotic series regularization method turning point unified transform modified Helmholtz equation global relation triple q-hypergeometric function convergence region Ward q-addition q-integral representation |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Differential and Difference Equations |
Record Nr. | UNINA-9910557286803321 |
Ntouyas Sotiris K
![]() |
||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Pi: the next generation : a sourcebook on the recent history of Pi and its computation / David H. Bailey, Jonathan M. Borwein |
Autore | Bailey, David H. |
Pubbl/distr/stampa | [Cham], : Springer, 2016 |
Descrizione fisica | XIV, 507 p. : ill. ; 24 cm |
Altri autori (Persone) | Borwein, Jonathan M. |
Soggetto topico |
68-XX - Computer science [MSC 2020]
11-XX - Number theory [MSC 2020] 65-XX - Numerical analysis [MSC 2020] 26-XX - Real functions [MSC 2020] 01-XX - History and biography [MSC 2020] 01A75 - Collected or selected works; reprintings or translations of classics [MSC 2020] 01A05 - General histories, source books [MSC 2020] |
Soggetto non controllato |
Approximations to pi
Arithmetic-geometric mean Gauss Asymptotic expansions Catalan's constant Computation pi Euler numbers Ladies diary Proofs pi Spigot algorithms pi normal |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0115271 |
Bailey, David H.
![]() |
||
[Cham], : Springer, 2016 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Pi: the next generation : a sourcebook on the recent history of Pi and its computation / David H. Bailey, Jonathan M. Borwein |
Autore | Bailey, David H. |
Pubbl/distr/stampa | [Cham], : Springer, 2016 |
Descrizione fisica | XIV, 507 p. : ill. ; 24 cm |
Altri autori (Persone) | Borwein, Jonathan M. |
Soggetto topico |
01-XX - History and biography [MSC 2020]
01A05 - General histories, source books [MSC 2020] 01A75 - Collected or selected works; reprintings or translations of classics [MSC 2020] 11-XX - Number theory [MSC 2020] 26-XX - Real functions [MSC 2020] 65-XX - Numerical analysis [MSC 2020] 68-XX - Computer science [MSC 2020] |
Soggetto non controllato |
Approximations to pi
Arithmetic-geometric mean Gauss Asymptotic expansions Catalan's constant Computation pi Euler numbers Ladies diary Proofs pi Spigot algorithms pi normal |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00115271 |
Bailey, David H.
![]() |
||
[Cham], : Springer, 2016 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|