Classical Mechanics / Matthew J. Benacquista, Joseph D. Romano
| Classical Mechanics / Matthew J. Benacquista, Joseph D. Romano |
| Autore | Benacquista, Matthew J. |
| Pubbl/distr/stampa | Cham, : Springer, 2018 |
| Descrizione fisica | xvii, 546 p. : ill. ; 24 cm |
| Altri autori (Persone) | Romano, Joseph D. |
| Soggetto topico |
70-XX - Mechanics of particles and systems [MSC 2020]
00A79 (77-XX) - Physics [MSC 2020] 83-XX - Relativity and gravitational theory [MSC 2020] |
| Soggetto non controllato |
Analytical Mechanics
Euler equations Hamilton Principle Kepler Law Lagrangian Formalism Mechanics Lorentz transformations Textbook Classical Mechanics Textbook Mechanics Physics |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0208405 |
Benacquista, Matthew J.
|
||
| Cham, : Springer, 2018 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Classical Mechanics / Matthew J. Benacquista, Joseph D. Romano
| Classical Mechanics / Matthew J. Benacquista, Joseph D. Romano |
| Autore | Benacquista, Matthew J. |
| Pubbl/distr/stampa | Cham, : Springer, 2018 |
| Descrizione fisica | xvii, 546 p. : ill. ; 24 cm |
| Altri autori (Persone) | Romano, Joseph D. |
| Soggetto topico |
00A79 (77-XX) - Physics [MSC 2020]
70-XX - Mechanics of particles and systems [MSC 2020] 83-XX - Relativity and gravitational theory [MSC 2020] |
| Soggetto non controllato |
Analytical Mechanics
Classical mechanics Euler equations Hamilton Principle Kepler Law Lagrangian Formalism Mechanics Lorentz transformations Mechanics |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00208405 |
Benacquista, Matthew J.
|
||
| Cham, : Springer, 2018 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Differentiable Manifolds : A Theoretical Physics Approach / Gerardo F. Torres del Castillo
| Differentiable Manifolds : A Theoretical Physics Approach / Gerardo F. Torres del Castillo |
| Autore | Torres del Castillo, Gerardo F. |
| Edizione | [2. ed] |
| Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2020 |
| Descrizione fisica | x, 444 p. : ill. ; 24 cm |
| Soggetto topico |
58-XX - Global analysis, analysis on manifolds [MSC 2020]
70H05 - Hamilton's equations [MSC 2020] 53C21 - Methods of global Riemannian geometry, including PDE methods; curvature restrictions [MSC 2020] 58A05 - Differentiable manifolds, foundations [MSC 2020] 70H03 - Lagrange's equations [MSC 2020] |
| Soggetto non controllato |
Differentiable manifolds
Differential forms algebra Euler equations Fiber bundles physics Hamiltonian classical mechanics Lie algebras physics Lie derivatives Lie groups physics and geometry Metric tensor Riemannian manifolds Tensor field Time-dependent formalism Vector fields |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0248996 |
Torres del Castillo, Gerardo F.
|
||
| Cham, : Birkhäuser, : Springer, 2020 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Differentiable Manifolds : A Theoretical Physics Approach / Gerardo F. Torres del Castillo
| Differentiable Manifolds : A Theoretical Physics Approach / Gerardo F. Torres del Castillo |
| Autore | Torres del Castillo, Gerardo F. |
| Edizione | [2. ed] |
| Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2020 |
| Descrizione fisica | x, 444 p. : ill. ; 24 cm |
| Soggetto topico |
53C21 - Methods of global Riemannian geometry, including PDE methods; curvature restrictions [MSC 2020]
58-XX - Global analysis, analysis on manifolds [MSC 2020] 58A05 - Differentiable manifolds, foundations [MSC 2020] 70H03 - Lagrange's equations [MSC 2020] 70H05 - Hamilton's equations [MSC 2020] |
| Soggetto non controllato |
Differentiable manifolds
Differential forms algebra Euler equations Fiber bundles physics Hamiltonian classical mechanics Lie Algebras Lie derivatives Lie groups Metric tensor Riemannian manifolds Tensor field Time-dependent formalism Vector fields |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00248996 |
Torres del Castillo, Gerardo F.
|
||
| Cham, : Birkhäuser, : Springer, 2020 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Geometric Analysis of Nonlinear Partial Differential Equations
| Geometric Analysis of Nonlinear Partial Differential Equations |
| Autore | Lychagin Valentin |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (204 p.) |
| Soggetto topico |
Mathematics & science
Research & information: general |
| Soggetto non controllato |
adjoint-symmetry
Chebfun chebop clamped Clifford algebras contact spaces contact symmetry cylindrical and spherical waves Darboux transforms Darboux-Bäcklund transformation differential coverings differential invariants discretization drift eigenpairs error control Euler equation Euler equations exact solutions free resolution geometrical formulation head shock wave hinged boundary condition integrable systems invariant derivations isothermic immersions KdV type hierarchies Korteweg-de Vries-Burgers equation Lagrangian curve flows Levi-Civita connections linearization media with inner structures Navier-Stokes equations nonlocal conservation laws one-form optimal investment theory periodic boundary conditions phase transitions plane molecules polynomial and rational invariants preconditioning quotient equation saw-tooth solutions shockwaves spectral collocation Spin groups Sturm-Liouville symmetries symmetry symplectic syzygy vector field water |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557351103321 |
Lychagin Valentin
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time / / Philip Isett
| Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time / / Philip Isett |
| Autore | Isett Philip |
| Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2017] |
| Descrizione fisica | 1 online resource (214 pages) |
| Disciplina | 532/.05 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico | Fluid dynamics - Mathematics |
| Soggetto non controllato |
Beltrami flows
Einstein summation convention Euler equations Euler flow Euler-Reynolds equations Euler-Reynolds system Galilean invariance Galilean transformation HighЈigh Interference term HighЈigh term HighЌow Interaction term Hlder norm Hlder regularity Lars Onsager Main Lemma Main Theorem Mollification term Newton's law Noether's theorem Onsager's conjecture Reynolds stres Reynolds stress Stress equation Stress term Transport equation Transport term Transport-Elliptic equation abstract index notation algebra amplitude coarse scale flow coarse scale velocity coefficient commutator estimate commutator term commutator conservation of momentum continuous solution contravariant tensor convergence convex integration correction term correction covariant tensor dimensional analysis divergence equation divergence free vector field divergence operator energy approximation energy function energy increment energy regularity energy variation energy error term error finite time interval first material derivative fluid dynamics frequencies frequency energy levels h-principle integral lifespan parameter lower indices material derivative mollification mollifier moment vanishing condition momentum multi-index non-negative function nonzero solution optimal regularity oscillatory factor oscillatory term parameters parametrix expansion parametrix phase direction phase function phase gradient pressure correction pressure regularity relative acceleration relative velocity scaling symmetry second material derivative smooth function smooth stress tensor smooth vector field spatial derivative stress tensor theorem time cutoff function time derivative transport derivative transport equations transport estimate transport upper indices vector amplitude velocity correction velocity field velocity weak limit weak solution |
| ISBN | 1-4008-8542-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Preface -- Part I. Introduction -- Part II. General Considerations of the Scheme -- Part III. Basic Construction of the Correction -- Part IV. Obtaining Solutions from the Construction -- Part V. Construction of Regular Weak Solutions: Preliminaries -- Part VI Construction of Regular Weak Solutions: Estimating the Correction -- Part VII. Construction of Regular Weak Solutions: Estimating the New Stress -- Acknowledgments -- Appendices -- References -- Index |
| Record Nr. | UNINA-9910163942603321 |
Isett Philip
|
||
| Princeton, NJ : , : Princeton University Press, , [2017] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
New Trends and Results in Mathematical Description of Fluid Flows / Miroslav Bulíček, Eduard Feireisl, Milan Pokorný editors
| New Trends and Results in Mathematical Description of Fluid Flows / Miroslav Bulíček, Eduard Feireisl, Milan Pokorný editors |
| Pubbl/distr/stampa | Cham, : Birkhäuser, 2018 |
| Descrizione fisica | xi, 181 p. : ill. ; 24 cm |
| Soggetto topico |
35Dxx - Generalized solutions to partial differential equations [MSC 2020]
35Qxx - Partial differential equations of mathematical physics and other areas of application [MSC 2020] 76M10 - Finite element methods applied to problems in fluid mechanics [MSC 2020] 76D03 - Existence, uniqueness, and regularity theory for incompressible viscous fluids [MSC 2020] 76N10 - Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics [MSC 2020] 76B03 - Existence, uniqueness, and regularity theory for incompressible inviscid fluids [MSC 2020] 76T10 - Liquid-gas two-phase flows, bubbly flows [MSC 2020] 35L02 - First-order hyperbolic equations [MSC 2020] |
| Soggetto non controllato |
Compactness of solutions
Compressible transport equation Diffuse and sharp interface Dissipative solutions Euler equations Martingale solutions Measure-valued solutions Partial differential equations Stochastic navier-stokes equations Two-phase flow |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0124886 |
| Cham, : Birkhäuser, 2018 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
New Trends and Results in Mathematical Description of Fluid Flows / Miroslav Bulíček, Eduard Feireisl, Milan Pokorný editors
| New Trends and Results in Mathematical Description of Fluid Flows / Miroslav Bulíček, Eduard Feireisl, Milan Pokorný editors |
| Pubbl/distr/stampa | Cham, : Birkhäuser, 2018 |
| Descrizione fisica | xi, 181 p. : ill. ; 24 cm |
| Soggetto topico |
35Dxx - Generalized solutions to partial differential equations [MSC 2020]
35L02 - First-order hyperbolic equations [MSC 2020] 35Qxx - Partial differential equations of mathematical physics and other areas of application [MSC 2020] 76B03 - Existence, uniqueness, and regularity theory for incompressible inviscid fluids [MSC 2020] 76D03 - Existence, uniqueness, and regularity theory for incompressible viscous fluids [MSC 2020] 76M10 - Finite element methods applied to problems in fluid mechanics [MSC 2020] 76N10 - Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics [MSC 2020] 76T10 - Liquid-gas two-phase flows, bubbly flows [MSC 2020] |
| Soggetto non controllato |
Compactness of solutions
Compressible transport equation Diffuse and sharp interface Dissipative solutions Euler equations Martingale solutions Measure-valued solutions Partial Differential Equations Stochastic navier-stokes equations Two-phase flow |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00124886 |
| Cham, : Birkhäuser, 2018 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Ordinary Differential Equations : Mathematical Tools for Physicists / Raza Tahir-Kheli
| Ordinary Differential Equations : Mathematical Tools for Physicists / Raza Tahir-Kheli |
| Autore | Tahir-Kheli, Raza |
| Pubbl/distr/stampa | Cham, : Springer, 2018 |
| Descrizione fisica | xxii, 408 p. : ill. ; 24 cm |
| Soggetto topico |
65Lxx - Numerical methods for ordinary differential equations [MSC 2020]
34-XX - Ordinary differential equations [MSC 2020] 70-XX - Mechanics of particles and systems [MSC 2020] |
| Soggetto non controllato |
Bernouilli Equation
Clairaut Equation Euler equations Lagrange Equation Ordinary differential equations Runge-Kutta Approximation Theory and Practice of Ordinary Differential Equations |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0211527 |
Tahir-Kheli, Raza
|
||
| Cham, : Springer, 2018 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Ordinary Differential Equations : Mathematical Tools for Physicists / Raza Tahir-Kheli
| Ordinary Differential Equations : Mathematical Tools for Physicists / Raza Tahir-Kheli |
| Autore | Tahir-Kheli, Raza |
| Pubbl/distr/stampa | Cham, : Springer, 2018 |
| Descrizione fisica | xxii, 408 p. : ill. ; 24 cm |
| Soggetto topico |
34-XX - Ordinary differential equations [MSC 2020]
65Lxx - Numerical methods for ordinary differential equations [MSC 2020] 70-XX - Mechanics of particles and systems [MSC 2020] |
| Soggetto non controllato |
Bernouilli Equation
Clairaut Equation Euler equations Lagrange Equation Ordinary Differential Equations Runge-Kutta Approximation Theory and Practice of Ordinary Differential Equations |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00211527 |
Tahir-Kheli, Raza
|
||
| Cham, : Springer, 2018 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||