top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Energy and Sustainable Futures : Proceedings of 2nd ICESF 2020
Energy and Sustainable Futures : Proceedings of 2nd ICESF 2020
Autore Mporas Iosif
Pubbl/distr/stampa Springer Nature, 2021
Descrizione fisica 1 online resource (274 pages)
Altri autori (Persone) KourtessisPandelis
Al-HabaibehAmin
AsthanaAbhishek
VukovicVladimir
SeniorJohn
Collana Springer Proceedings in Energy
Soggetto topico Alternative & renewable energy sources & technology
Energy conversion & storage
Energy technology & engineering
Soggetto non controllato Renewable and Green Energy
Energy Storage
Energy Policy, Economics and Management
Renewable Energy
Mechanical and Thermal Energy Storage
ICT and Control of Energy
Conventional Energy Sources
Engines
Materials in Energy Research
Energy Governance
Open Access
Alternative & renewable energy sources & technology
Energy, power generation, distribution & storage
Energy technology & engineering
Energy industries & utilities
ISBN 3-030-63916-9
Classificazione BUS070040TEC031000TEC031010
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910473453103321
Mporas Iosif  
Springer Nature, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Future European Energy System : Renewable Energy, Flexibility Options and Technological Progress
The Future European Energy System : Renewable Energy, Flexibility Options and Technological Progress
Autore Möst Dominik
Edizione [1st ed.]
Pubbl/distr/stampa Springer Nature, 2021
Descrizione fisica 1 online resource (321 pages)
Altri autori (Persone) SchreiberSteffi
HerbstAndrea
JakobMartin
MartinoAngelo
PoganietzWitold-Roger
Collana Economics and Finance Series
Soggetto topico Environmental economics
Energy technology & engineering
Public administration
Electrical engineering
Soggetto non controllato Natural Resource and Energy Economics
Energy Policy, Economics and Management
Public Policy
Power Electronics, Electrical Machines and Networks
Energy System Transformation
Energy Grids and Networks
Energy system analysis
Renewable energy
Life cycle assessment
Technological learing
Energy system models
Energy market models
Climate change
Low-carbon energy system
Strategic energy technology plan of the European Commission
Open Access
Environmental economics
Energy technology & engineering
Energy industries & utilities
Public administration
Electrical engineering
ISBN 3-030-60914-6
Classificazione BUS069000BUS070040POL028000TEC046000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Acknowledgments -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- List of Figures -- List of Tables -- Part IIntroduction, Scenario Description and Model Coupling Approach -- 1 Introduction -- Reference -- 2 Scenario Storyline in Context of Decarbonization Pathways for a Future European Energy System -- 2.1 Introduction -- 2.2 Scenario Definition and General Drivers -- 2.3 Socio-Technical Scenario Framework -- 2.4 Moderate Renewable Energy Source Scenario (Mod-RES) -- 2.5 Centralized versus Decentralized High Renewable Scenario (High-RES) -- 2.5.1 Centralized High-RES Scenario -- 2.5.2 Decentralized High-RES Scenario -- 2.6 Conclusions -- References -- 3 Model Coupling Approach for the Analysis of the Future European Energy System -- 3.1 Introduction -- 3.2 Description of Applied Models -- 3.2.1 ELTRAMOD -- 3.2.2 TIMES-Heat-EU -- 3.2.3 PowerACE -- 3.2.4 FORECAST -- 3.2.5 eLOAD -- 3.2.6 ASTRA -- 3.2.7 TE3 -- 3.2.8 eLCA and sLCA -- 3.2.9 πESA -- 3.3 REFLEX Energy Models System -- References -- Part IITechnological Progress -- 4 Deriving Experience Curves and Implementing Technological Learning in Energy System Models -- 4.1 Introduction -- 4.1.1 History and Concept -- 4.1.2 Key Applications of Experience Curves -- 4.1.3 Key Issues and Drawbacks of Experience Curves -- 4.2 Data Collection and Derivation of Experience Curves -- 4.2.1 Functional Unit and System Boundaries -- 4.2.2 Correction for Currency and Inflation -- 4.2.3 Deriving Experience Curve Parameters -- 4.3 Experience Curves in Energy System Models -- 4.3.1 Model Implementation of Experience Curves -- 4.3.2 Issues with Implementation of Experience Curves in Energy Models -- 4.3.3 Description of Energy Models with Implemented Experience Curves -- 4.4 State-of-the-Art Experience Curves and Modeling Results.
4.4.1 Overview of State-of-the-Art Experience Curves -- 4.4.2 Deployments and Cost Developments of Relevant Technologies -- 4.5 Lessons Learned -- 4.5.1 Methodological Issues -- 4.5.2 Model Implementation Issues -- 4.6 Conclusions -- References -- 5 Electric Vehicle Market Diffusion in Main Non-European Markets -- 5.1 Introduction -- 5.1.1 Motivation -- 5.1.2 Related Research and Research Question -- 5.2 Considering Experience Curves in Market Diffusion Modeling and Scenario Definition -- 5.2.1 The TE3 Model and Implementation of Experience Curves -- 5.2.2 Framework of the Two Analyzed Scenarios for the Main Non-European Car Markets -- 5.3 Results of Key Non-European Countries -- 5.3.1 Effects on Cumulative Battery Capacity and Battery Costs -- 5.3.2 Development of the Car Stock for the Four Main Markets in the Mod-RES and High-RES Scenario -- 5.3.3 Critical Review and Limitations -- 5.4 Summary and Conclusions -- References -- Part IIIDemand Side Flexibility and the Role of Disruptive Technologies -- 6 Future Energy Demand Developments and Demand Side Flexibility in a Decarbonized Centralized Energy System -- 6.1 Introduction -- 6.2 Scenario Assumptions and Model Coupling -- 6.3 Future Energy Demand and CO2 Emissions -- 6.3.1 Decarbonizing the Transport Sector -- 6.3.2 Decarbonizing the Residential and Tertiary Sector -- 6.3.3 Decarbonizing the Industry Sector -- 6.4 The Future Need for Demand Side Flexibility -- 6.5 Conclusions -- References -- 7 Disruptive Demand Side Technologies: Market Shares and Impact on Flexibility in a Decentralized World -- 7.1 Introduction -- 7.1.1 Strategies for Decarbonizing Transport -- 7.1.2 Technologies for Decarbonizing Industry -- 7.1.3 Focus of this Study: Disruptive Technologies with Demand Side Flexibility -- 7.2 Disruptive Technologies with Flexibility Potential.
7.2.1 Photovoltaic Systems and Stationary Batteries -- 7.2.2 Battery Electric Vehicles -- 7.2.3 Hydrogen Electrolysis -- 7.3 Scenario Assumptions and Methodology -- 7.3.1 Scenario Assumptions for High-RES Decentralized -- 7.3.2 Model Coupling Approach -- 7.3.3 Methods Used for Technology Diffusion -- 7.4 Results: Diffusion of Technologies and Energy Demand -- 7.4.1 Installed Battery Capacity -- 7.4.2 Vehicle Fleet Technology Composition and Resulting Energy Demand -- 7.4.3 Radical Process Improvements in Industry and Their Implications for Future Electricity Demand -- 7.5 Impacts of Disruptive Technologies on Demand Side Flexibility -- 7.6 Discussion and Conclusions -- References -- 8 What is the Flexibility Potential in the Tertiary Sector? -- 8.1 Introduction -- 8.1.1 Overview of Demand Side Flexibility Markets -- 8.1.2 Overview of Tertiary Sector and Potential Applications, Regulatory Environment -- 8.2 Data Collection Methodology -- 8.2.1 Research Questions -- 8.2.2 Empirical Survey Introduction -- 8.2.3 Issues Encountered Regarding Empirical Data -- 8.3 Survey Results and Derived Flexibility Potentials -- 8.3.1 Participation Interest in DSM -- 8.3.2 Available Technologies -- 8.3.3 Derived Flexibility Potentials (S-Curve) -- 8.3.4 Lessons Learned and Issues Identified for Modelers -- 8.4 Conclusions and Recommendations for Further Research -- References -- 9 A Techno-Economic Comparison of Demand Side Management with Other Flexibility Options -- 9.1 Introduction -- 9.2 Techno-Economic Characteristics of DSM in Comparison with Other Flexibility Options -- 9.2.1 Technical Characteristics of DSM -- 9.2.2 Activation and Initialization Costs of DSM -- 9.3 Impact of DSM on Other Flexibility Options -- 9.3.1 Framework of the Analysis -- 9.3.2 Impact of DSM on the Operation of Conventional Power Plants and Pump Storage Plants.
9.3.3 Impact of DSM on Imports and Exports -- 9.4 Conclusions -- References -- Part IVFlexibility Options in the Electricity and Heating Sector -- 10 Optimal Energy Portfolios in the Electricity Sector: Trade-Offs and Interplay Between Different Flexibility Options -- 10.1 Introduction -- 10.2 Data Input and Model Coupling -- 10.3 Optimal Investments in Flexibility Options -- 10.3.1 Sector Coupling Technologies -- 10.3.2 Power Plant Mix -- 10.3.3 Storages -- 10.4 Sensitivity Analyses -- 10.4.1 Impact of Limited DSM Potential and Reduced Battery Investment Costs on the Storage Value in the Electricity Market -- 10.4.2 Impact of Higher Shares of Renewable Energy Sources -- 10.5 Levelized Costs of Electricity and CO2 Abatement Costs -- 10.6 Discussion and Conclusion -- References -- 11 Impact of Electricity Market Designs on Investments in Flexibility Options -- 11.1 The European Debate on Electricity Market Design -- 11.2 Research Design -- 11.3 Development of the Conventional Generation Capacities and Wholesale Electricity Prices -- 11.3.1 Mod-RES Scenario -- 11.3.2 High-RES Decentralized Scenario -- 11.3.3 High-RES Centralized Scenario -- 11.4 Impact on Generation Adequacy -- 11.5 Summary and Conclusions -- References -- 12 Optimal Energy Portfolios in the Heating Sector and Flexibility Potentials of Combined-Heat-Power Plants and District Heating Systems -- 12.1 Introduction -- 12.2 TIMES-Heat-EU Model -- 12.3 Developments in the District Heating Sector -- 12.3.1 Scenario Results -- 12.3.2 CO2 Emissions in the Heating Sector -- 12.3.3 Sensitivity Analysis -- 12.4 Conclusion -- References -- Part VAnalysis of the Environmental and Socio-Impacts beyond the Greenhouse Gas Emission Reduction Targets -- 13 Unintended Environmental Impacts at Local and Global Scale-Trade-Offs of a Low-Carbon Electricity System -- 13.1 Introduction.
13.2 Developing the Model Coupling Approach to Identify Environmental Trade-Offs -- 13.2.1 Describing Relevant Input Parameters for the LCA Model in Context of the REFLEX Scenarios -- 13.2.2 Coupling the Results of ELTRAMOD and the LCA Model to Determine Policy Implications -- 13.3 Unintended Environmental Consequences of the European Low-Carbon Electricity System -- 13.3.1 Environmental Impacts at Local Scale and the Challenges for European Member States -- 13.3.2 Resource Depletion in REFLEX Mitigation Scenarios as a Backdrop of Global Trade Uncertainty -- 13.4 Conclusions and Policy Implications -- References -- 14 Assessing Social Impacts in Current and Future Electricity Production in the European Union -- 14.1 Introduction -- 14.2 Method -- 14.2.1 Background to the SOCA Add-on for Social Life Cycle Assessment -- 14.2.2 Establishing the Life Cycle Model for Social Assessment -- 14.2.3 Social Impact Categories -- 14.2.4 Calculation Method -- 14.2.5 Contribution Analysis -- 14.3 Results -- 14.4 Concluding Discussion and Policy Implications -- References -- 15 Spatially Disaggregated Impact Pathway Analysis of Direct Particulate Matter Emissions -- 15.1 Introduction -- 15.2 Description of the Method -- 15.2.1 Emission Scenarios -- 15.2.2 Air Quality Modeling -- 15.2.3 Health Impacts and External Costs -- 15.3 Results -- 15.3.1 Summary and Conclusions -- References -- Part VIConcluding Remarks -- 16 Summary, Conclusion and Recommendations -- 16.1 Summary -- 16.1.1 Electricity Sector -- 16.1.2 Demand Side Sectors -- 16.1.3 Environmental Impacts -- 16.2 Conclusions and Recommendations -- 16.2.1 Electricity Sector -- 16.2.2 Industry Sector -- 16.2.3 Transport Sector -- 16.2.4 Heating Sector -- 16.2.5 Environmental, Social Life Cycle and Health Impact Assessment -- 16.3 Further Aspects and Outlook -- References.
Record Nr. UNINA-9910473450603321
Möst Dominik  
Springer Nature, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui