Critical Point Theory : Sandwich and Linking Systems / Martin Schechter |
Autore | Schechter, Martin |
Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2020 |
Descrizione fisica | xxxvi, 320 p. : ill. ; 24 cm |
Soggetto topico |
49J40 - Variational inequalities [MSC 2020]
35A15 - Variational methods applied to PDEs [MSC 2020] 58E05 - Abstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces [MSC 2020] 70G75 - Variational methods for problems in mechanics [MSC 2020] 35B38 - Critical points of functionals in context of PDEs (e.g., energy functionals) [MSC 2020] |
Soggetto non controllato |
Critical point calculus
Critical point theory Critical point theory applications Elliptic systems Hamiltonian systems Infinite dimensional linking Minimax systems Monotonicity Saddle point theory Sandwich pairs Sandwich sets Sandwich systems Schrödinger equations Semilinear differential equations Semilinear differential systems Semilinear partial differential equations Semilinear wave equation Variational methods Variational methods mathematical physics Weak solutions |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0248949 |
Schechter, Martin | ||
Cham, : Birkhäuser, : Springer, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Critical Point Theory : Sandwich and Linking Systems / Martin Schechter |
Autore | Schechter, Martin |
Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2020 |
Descrizione fisica | xxxvi, 320 p. : ill. ; 24 cm |
Soggetto topico |
35A15 - Variational methods applied to PDEs [MSC 2020]
35B38 - Critical points of functionals in context of PDEs (e.g., energy functionals) [MSC 2020] 49J40 - Variational inequalities [MSC 2020] 58E05 - Abstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces [MSC 2020] 70G75 - Variational methods for problems in mechanics [MSC 2020] |
Soggetto non controllato |
Critical point calculus
Critical point theory Critical point theory applications Elliptic systems Hamiltonian systems Infinite dimensional linking Minimax systems Monotonicity Saddle point theory Sandwich pairs Sandwich sets Sandwich systems Schrödinger equations Semilinear differential equations Semilinear differential systems Semilinear partial differential equations Semilinear wave equation Variational methods Variational methods mathematical physics Weak solutions |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00248949 |
Schechter, Martin | ||
Cham, : Birkhäuser, : Springer, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Periodic Homogenization of Elliptic Systems / Zhongwei Shen |
Autore | Shen, Zhongwei |
Pubbl/distr/stampa | Cham, : Birkhäuser, 2018 |
Descrizione fisica | ix, 291 p. ; 24 cm |
Soggetto topico |
35B27 - Homogenization in context of PDEs ; PDEs in media with periodic structure [MSC 2020]
35J57 - Boundary value problems for second-order elliptic systems [MSC 2020] 74Qxx - Homogenization, determination of effective properties in solid mechanics [MSC 2020] |
Soggetto non controllato |
Boundary Value Problems
Convergence rates Elliptic systems Homogenization Layer potentials Partial differential equations Periodic coefficients Regularity estimates |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0124934 |
Shen, Zhongwei | ||
Cham, : Birkhäuser, 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Periodic Homogenization of Elliptic Systems / Zhongwei Shen |
Autore | Shen, Zhongwei |
Pubbl/distr/stampa | Cham, : Birkhäuser, 2018 |
Descrizione fisica | ix, 291 p. ; 24 cm |
Soggetto topico |
35B27 - Homogenization in context of PDEs ; PDEs in media with periodic structure [MSC 2020]
35J57 - Boundary value problems for second-order elliptic systems [MSC 2020] 74Qxx - Homogenization, determination of effective properties in solid mechanics [MSC 2020] |
Soggetto non controllato |
Boundary Value Problems
Convergence rates Elliptic systems Homogenization Layer potentials Partial differential equations Periodic coefficients Regularity estimates |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00124934 |
Shen, Zhongwei | ||
Cham, : Birkhäuser, 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|