Advanced control of power converters : techniques and Matlab/Simulink implementation / / Hasan Komurcugil [and four others] |
Autore | Komurcugil Hasan |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2023] |
Descrizione fisica | 1 online resource (467 pages) |
Disciplina | 621.3815322 |
Collana | IEEE Press Series on Control Systems Theory and Applications Series |
Soggetto topico |
Convertidors de corrent elèctric
Control no lineal, Teoria de Electric current converters Nonlinear control theory |
Soggetto non controllato |
Electronics
Electric Power System Theory Technology & Engineering Science |
ISBN |
9781119854432
1-119-85443-1 1-119-85441-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- List of Abbreviations -- Preface -- Acknowledgment -- About the Companion Website -- Chapter 1 Introduction -- 1.1 General Remarks -- 1.2 Basic Closed-Loop Control for Power Converters -- 1.3 Mathematical Modeling of Power Converters -- 1.4 Basic Control Objectives -- 1.4.1 Closed-Loop Stability -- 1.4.2 Settling Time -- 1.4.3 Steady-State Error -- 1.4.4 Robustness to Parameter Variations and Disturbances -- 1.5 Performance Evaluation -- 1.5.1 Simulation-Based Method -- 1.5.2 Experimental Method -- 1.6 Contents of the Book -- References -- Chapter 2 Introduction to Advanced Control Methods -- 2.1 Classical Control Methods for Power Converters -- 2.2 Sliding Mode Control -- 2.3 Lyapunov Function-Based Control -- 2.3.1 Lyapunov's Linearization Method -- 2.3.2 Lyapunov's Direct Method -- 2.4 Model Predictive Control -- 2.4.1 Functional Principle -- 2.4.2 Basic Concept -- 2.4.3 Cost Function -- References -- Chapter 3 Design of Sliding Mode Control for Power Converters -- 3.1 Introduction -- 3.2 Sliding Mode Control of DC-DC Buck and Cuk Converters -- 3.3 Sliding Mode Control Design Procedure -- 3.3.1 Selection of Sliding Surface Function -- 3.3.2 Control Input Design -- 3.4 Chattering Mitigation Techniques -- 3.4.1 Hysteresis Function Technique -- 3.4.2 Boundary Layer Technique -- 3.4.3 State Observer Technique -- 3.5 Modulation Techniques -- 3.5.1 Hysteresis Modulation Technique -- 3.5.2 Sinusoidal Pulse Width Modulation Technique -- 3.5.3 Space Vector Modulation Technique -- 3.6 Other Types of Sliding Mode Control -- 3.6.1 Terminal Sliding Mode Control -- 3.6.2 Second-Order Sliding Mode Control -- References -- Chapter 4 Design of Lyapunov Function-Based Control for Power Converters -- 4.1 Introduction -- 4.2 Lyapunov-Function-Based Control Design Using Direct Method.
4.3 Lyapunov Function-Based Control of DC-DC Buck Converter -- 4.4 Lyapunov Function-Based Control of DC-DC Boost Converter -- References -- Chapter 5 Design of Model Predictive Control -- 5.1 Introduction -- 5.2 Predictive Control Methods -- 5.3 FCS Model Predictive Control -- 5.3.1 Design Procedure -- 5.3.2 Tutorial 1: Implementation of FCS-MPC for Three-Phase VSI -- 5.4 CCS Model Predictive Control -- 5.4.1 Incremental Models -- 5.4.2 Predictive Model -- 5.4.3 Cost Function in CCSMPC -- 5.4.4 Cost Function Minimization -- 5.4.5 Receding Control Horizon Principle -- 5.4.6 Closed-Loop of an MPC System -- 5.4.7 Discrete Linear Quadratic Regulators -- 5.4.8 Formulation of the Constraints in MPC -- 5.4.9 Optimization with Equality Constraints -- 5.4.10 Optimization with Inequality Constraints -- 5.4.11 MPC for Multi-Input Multi-Output Systems -- 5.4.12 Tutorial 2: MPC Design For a Grid-Connected VSI in dq Frame -- 5.5 Design and Implementation Issues -- 5.5.1 Cost Function Selection -- 5.5.1.1 Examples for Primary Control Objectives -- 5.5.1.2 Examples for Secondary Control Objectives -- 5.5.2 Weighting Factor Design -- 5.5.2.1 Empirical Selection Method -- 5.5.2.2 Equal-Weighted Cost-Function-Based Selection Method -- 5.5.2.3 Lookup Table-Based Selection Method -- References -- Chapter 6 MATLAB/Simulink Tutorial on Physical Modeling and Experimental Setup -- 6.1 Introduction -- 6.2 Building Simulation Model for Power Converters -- 6.2.1 Building Simulation Model for Single-Phase Grid-Connected Inverter Based on Sliding Mode Control -- 6.2.2 Building Simulation Model for Three-Phase Rectifier Based on Lyapunov-Function-Based Control -- 6.2.3 Building Simulation Model for Quasi-Z Source Three-Phase Four-Leg Inverter Based on Model Predictive Control -- 6.2.4 Building Simulation Model for Distributed Generations in Islanded AC Microgrid. 6.3 Building Real-Time Model for a Single-Phase T-Type Rectifier -- 6.4 Building Rapid Control Prototyping for a Single-Phase T-Type Rectifier -- 6.4.1 Components in the Experimental Testbed -- 6.4.1.1 Grid Simulator -- 6.4.1.2 A Single-Phase T-Type Rectifier Prototype -- 6.4.1.3 Measurement Board -- 6.4.1.4 Programmable Load -- 6.4.1.5 Controller -- 6.4.2 Building Control Structure on OP-5707 -- References -- Chapter 7 Sliding Mode Control of Various Power Converters -- 7.1 Introduction -- 7.2 Single-Phase Grid-Connected Inverter with LCL Filter -- 7.2.1 Mathematical Modeling of Grid-Connected Inverter with LCL Filter -- 7.2.2 Sliding Mode Control -- 7.2.3 PWM Signal Generation Using Hysteresis Modulation -- 7.2.3.1 Single-Band Hysteresis Function -- 7.2.3.2 Double-Band Hysteresis Function -- 7.2.4 Switching Frequency Computation -- 7.2.4.1 Switching Frequency Computation with Single-Band Hysteresis Modulation -- 7.2.4.2 Switching Frequency Computation with Double-Band Hysteresis Modulation -- 7.2.5 Selection of Control Gains -- 7.2.6 Simulation Study -- 7.2.7 Experimental Study -- 7.3 Three-Phase Grid-Connected Inverter with LCL Filter -- 7.3.1 Physical Model Equations for a Three-Phase Grid-Connected VSI with an LCL Filter -- 7.3.2 Control System -- 7.3.2.1 Reduced State-Space Model of the Converter -- 7.3.2.2 Model Discretization and KF Adaptive Equation -- 7.3.2.3 Sliding Surfaces with Active Damping Capability -- 7.3.3 Stability Analysis -- 7.3.3.1 Discrete-Time Equivalent Control Deduction -- 7.3.3.2 Closed-Loop System Equations -- 7.3.3.3 Test of Robustness Against Parameters Uncertainties -- 7.3.4 Experimental Study -- 7.3.4.1 Test of Robustness Against Grid Inductance Variations -- 7.3.4.2 Test of Stability in Case of Grid Harmonics Near the Resonance Frequency -- 7.3.4.3 Test of the VSI Against Sudden Changes in the Reference Current. 7.3.4.4 Test of the VSI Under Distorted Grid -- 7.3.4.5 Test of the VSI Under Voltage Sags -- 7.3.5 Computational Load and Performances of the Control Algorithm -- 7.4 Three-Phase AC-DC Rectifier -- 7.4.1 Nonlinear Model of the Unity Power Factor Rectifier -- 7.4.2 Problem Formulation -- 7.4.3 Axis-Decoupling Based on an Estimator -- 7.4.4 Control System -- 7.4.4.1 Kalman Filter -- 7.4.4.2 Practical Considerations: Election of Q and R Matrices -- 7.4.4.3 Practical Considerations: Computational Burden Reduction -- 7.4.5 Sliding Mode Control -- 7.4.5.1 Inner Control Loop -- 7.4.5.2 Outer Control Loop -- 7.4.6 Hysteresis Band Generator with Switching Decision Algorithm -- 7.4.7 Experimental Study -- 7.5 Three-Phase Transformerless Dynamic Voltage Restorer -- 7.5.1 Mathematical Modeling of Transformerless Dynamic Voltage Restorer -- 7.5.2 Design of Sliding Mode Control for TDVR -- 7.5.3 Time-Varying Switching Frequency with Single-Band Hysteresis -- 7.5.4 Constant Switching Frequency with Boundary Layer -- 7.5.5 Simulation Study -- 7.5.6 Experimental Study -- 7.6 Three-Phase Shunt Active Power Filter -- 7.6.1 Nonlinear Model of the SAPF -- 7.6.2 Problem Formulation -- 7.6.3 Control System -- 7.6.3.1 State Model of the Converter -- 7.6.3.2 Kalman Filter -- 7.6.3.3 Sliding Mode Control -- 7.6.3.4 Hysteresis Band Generator with SDA -- 7.6.4 Experimental Study -- 7.6.4.1 Response of the SAPF to Load Variations -- 7.6.4.2 SAPF Performances Under a Distorted Grid -- 7.6.4.3 SAPF Performances Under Grid Voltage Sags -- 7.6.4.4 Spectrum of the Control Signal -- References -- Chapter 8 Design of Lyapunov Function-Based Control of Various Power Converters -- 8.1 Introduction -- 8.2 Single-Phase Grid-Connected Inverter with LCL Filter -- 8.2.1 Mathematical Modeling and Controller Design -- 8.2.2 Controller Modification with Capacitor Voltage Feedback. 8.2.3 Inverter-Side Current Reference Generation Using Proportional-Resonant Controller -- 8.2.4 Grid Current Transfer Function -- 8.2.5 Harmonic Attenuation and Harmonic Impedance -- 8.2.6 Results -- 8.3 Single-Phase Quasi-Z-Source Grid-Connected Inverter with LCL Filter -- 8.3.1 Quasi-Z-Source Network Modeling -- 8.3.2 Grid-Connected Inverter Modeling -- 8.3.3 Control of Quasi-Z-Source Network -- 8.3.4 Control of Grid-Connected Inverter -- 8.3.5 Reference Generation Using Cascaded PR Control -- 8.3.6 Results -- 8.4 Single-Phase Uninterruptible Power Supply Inverter -- 8.4.1 Mathematical Modeling of Uninterruptible Power Supply Inverter -- 8.4.2 Controller Design -- 8.4.3 Criteria for Selecting Control Parameters -- 8.4.4 Results -- 8.5 Three-Phase Voltage-Source AC-DC Rectifier -- 8.5.1 Mathematical Modeling of Rectifier -- 8.5.2 Controller Design -- 8.5.3 Results -- References -- Chapter 9 Model Predictive Control of Various Converters -- 9.1 CCS MPC Method for a Three-Phase Grid-Connected VSI -- 9.1.1 Model Predictive Control Design -- 9.1.1.1 VSI Incremental Model with an Embedded Integrator -- 9.1.1.2 Predictive Model of the Converter -- 9.1.1.3 Cost Function Minimization -- 9.1.1.4 Inclusion of Constraints -- 9.1.2 MATLAB®/Simulink® Implementation -- 9.1.3 Simulation Studies -- 9.2 Model Predictive Control Method for Single-Phase Three-Level Shunt Active Filter -- 9.2.1 Modeling of Shunt Active Filter (SAPF) -- 9.2.2 The Energy-Function-Based MPC -- 9.2.2.1 Design of Energy-Function-Based MPC -- 9.2.2.2 Discrete-Time Model -- 9.2.3 Experimental Studies -- 9.2.3.1 Steady-State and Dynamic Response Tests -- 9.2.3.2 Comparison with Classical MPC Method -- 9.3 Model Predictive Control of Quasi-Z Source Three-Phase Four-Leg Inverter -- 9.3.1 qZS Four-Leg Inverter Model -- 9.3.2 MPC Algorithm -- 9.3.2.1 Determination of References. 9.3.2.2 Discrete-Time Models of the System. |
Record Nr. | UNINA-9910735566603321 |
Komurcugil Hasan
![]() |
||
Hoboken, New Jersey : , : Wiley, , [2023] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced Nanomaterials and Their Applications : Select Proceedings of ICANA 2022 / / edited by N. Madhusudhana Rao, Giribabu Lingamallu, Mangilal Agarwal |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (159 pages) |
Disciplina | 620.11 |
Collana | Springer Proceedings in Materials |
Soggetto topico |
Nanotechnology
Optical materials Biomaterials Optical Materials |
Soggetto non controllato |
Electronics
Materials Nanotechnology Technology & Engineering |
ISBN |
9789819916160
9789819916153 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Ion Beam Synthesis of Germanium Nanocrystals - a Fluence Dependence Study -- Chapter 2. Graphene Oxide-Agar Agar Hydrogel for Efficient Removal of Methyl Orange from Water -- Chapter 3. Numerical Analysis of Novel Cs2AuBiCl6 Based Double Perovskite Solar Cells with Graphene Oxide as HTL- a SCAPS-1D Simulation -- Chapter 4. Nanoscopic Pd(II) Based Complexes with Poly-Ether Functionalized Ligand: The Crown Ether Analogue -- Chapter 5. Preparation of Hydrotalcite-CdPS3 Hybrid Solid from the Exfoliated Inorganic Nanosheets -- Chapter 6. Deposition Time-Dependant Properties of PbS Thin Films -- Chapter 7. Investigation on Surface Trap Characteristics of Water Diffused Al-Epoxy Nanocomposites -- Chapter 8. A Study on Impact of Hydrophobic Effect on Al2o3 Coated Glass by Sol-Gel Dip Coating Method for Automobile Windshield Application -- Chapter 9. Design and Analysis of Chalcogenide GeAsSe Waveguide for Dispersion Properties -- Chapter 10. Detection of Pathological Conditions in Nail Samples Using Laser Induced Breakdown Spectroscopy -- Chapter 11. A Review of m-RNA Vaccines with the Aid of Lipid Nanoparticles -- Chapter 12. Metal-organic frameworks for antibiotic sensing application -- Chapter 13. Metal Organic Frameworks (MOFs) based membranes for separation applications -- Chapter 14. Control of Dissolved Oxygen in Wastewater Treatment Plant Using NN Adaptive PID Controller. . |
Record Nr. | UNINA-9910725092403321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in Information Communication Technology and Computing : Proceedings of AICTC 2022 / / edited by Vishal Goar, Manoj Kuri, Rajesh Kumar, Tomonobu Senjyu |
Autore | Goar Vishal |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (621 pages) |
Disciplina | 004.6 |
Altri autori (Persone) |
KuriManoj
KumarRajesh SenjyuTomonobu |
Collana | Lecture Notes in Networks and Systems |
Soggetto topico |
Telecommunication
Signal processing Computer networks—Security measures Communications Engineering, Networks Signal, Speech and Image Processing Mobile and Network Security |
Soggetto non controllato |
Electronics
Computer Networks Telecommunication Technology & Engineering Computers |
ISBN | 981-19-9888-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Intelligent Quality Guarantor Model for Computer Vision based Quality Control -- The Impact of IT Capabilities on Competitive Advantage -- Start of Telemedicine in Uzbekistan Technological Availability -- Comparative Analysis of Convolutional and Long Term Short Memory Architectures in Machine Learning -- A Computer Vision-Based Lane Detection Approach For An Autonomous Vehicle Using The Image Hough Transformation And The Edge Features. |
Record Nr. | UNINA-9910728390303321 |
Goar Vishal
![]() |
||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Applications in Electronics Pervading Industry, Environment and Society : APPLEPIES 2019 / Sergio Saponara, Alessandro De Gloria editors |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | xiii, 562 p. : ill. ; 24 cm |
Soggetto topico |
00Bxx - Conference proceedings and collections of articles [MSC 2020]
00A79 (77-XX) - Physics [MSC 2020] 91-XX - Game theory, economics, finance, and other social and behavioral sciences [MSC 2020] 94Cxx - Circuits, networks [MSC 2020] |
Soggetto non controllato |
APPLEPIES
Electronic applications Electronics Information communication technology Smart sensors |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0225600 |
Cham, : Springer, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Applications in Electronics Pervading Industry, Environment and Society : APPLEPIES 2019 / Sergio Saponara, Alessandro De Gloria editors |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | xiii, 562 p. : ill. ; 24 cm |
Soggetto topico |
00A79 (77-XX) - Physics [MSC 2020]
00Bxx - Conference proceedings and collections of articles [MSC 2020] 91-XX - Game theory, economics, finance, and other social and behavioral sciences [MSC 2020] 94Cxx - Circuits, networks [MSC 2020] |
Soggetto non controllato |
APPLEPIES
Electronic applications Electronics Information communication technology Smart sensors |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00225600 |
Cham, : Springer, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Basic Electronics Engineering : Including Laboratory Manual / Satya Sai Srikant, Prakash Kumar Chaturvedi |
Autore | Srikant, Satya Sai |
Pubbl/distr/stampa | Singapore, : Springer, 2020 |
Descrizione fisica | xvii, 379 p. : ill. ; 24 cm |
Altri autori (Persone) | Chaturvedi, Prakash Kumar |
Soggetto topico |
94-XX - Information and communication theory, circuits [MSC 2020]
82-XX - Statistical mechanics, structure of matter [MSC 2020] 00A79 (77-XX) - Physics [MSC 2020] |
Soggetto non controllato |
Basic Electronic Circuits
Digital Electronics Electronic Materials Electronics Fundamental Electronics Introduction to Electronics Opto-electronics Semiconductor Diode Semiconductors Transducers |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0233799 |
Srikant, Satya Sai
![]() |
||
Singapore, : Springer, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Basic Electronics Engineering : Including Laboratory Manual / Satya Sai Srikant, Prakash Kumar Chaturvedi |
Autore | Srikant, Satya Sai |
Pubbl/distr/stampa | Singapore, : Springer, 2020 |
Descrizione fisica | xvii, 379 p. : ill. ; 24 cm |
Altri autori (Persone) | Chaturvedi, Prakash Kumar |
Soggetto topico |
00A79 (77-XX) - Physics [MSC 2020]
82-XX - Statistical mechanics, structure of matter [MSC 2020] 94-XX - Information and communication theory, circuits [MSC 2020] |
Soggetto non controllato |
Basic Electronic Circuits
Digital Electronics Electronic Materials Electronics Fundamental Electronics Introduction to Electronics Opto-electronics Semiconductor Diode Semiconductors Transducers |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00233799 |
Srikant, Satya Sai
![]() |
||
Singapore, : Springer, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Beyond-CMOS : state of the art and trends / / edited by Alessandro Cresti |
Edizione | [First edition.] |
Pubbl/distr/stampa | London, England : , : ISTE Ltd and John Wiley & Sons, Inc., , [2023] |
Descrizione fisica | 1 online resource (443 pages) |
Disciplina | 621.381 |
Soggetto topico | Digital electronics |
Soggetto non controllato |
Electronic Circuits
Electronics Technology & Engineering |
ISBN |
1-394-22871-6
1-394-22869-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1. Tunnel Field-Effect Transistors Based on III-V Semiconductors -- 1.1. Introduction -- 1.2. Experiments -- 1.3. Simulation of III-V-based TFETs -- 1.3.1. The k.p model in the NEGF formalism -- 1.4. SS degradation mechanisms -- 1.4.1. Electrostatic integrity -- 1.4.2. Trap-assisted tunneling -- 1.4.3. Surface roughness -- 1.5. Strategies to improve the on-state current -- 1.5.1. Strain -- 1.5.2. Broken-gap hetero-structures -- 1.5.3. Molar fraction grading of the source material -- 1.6. Conclusion -- 1.7. References -- Chapter 2. Field-Effect Transistors Based on 2D Materials: A Modeling Perspective -- 2.1. Introduction -- 2.1.1. Future of Moore's law -- 2.1.2. The potential of 2D materials -- 2.2. Modeling approach -- 2.2.1. Requirements and state of the art -- 2.2.2. Maximally localized Wannier functions (MLWFs) -- 2.2.3. Towards ab initio quantum transport simulations -- 2.3. 2D device performance analysis -- 2.3.1. MoS2 and other TMDs -- 2.3.2. Novel 2D materials -- 2.4. Challenges and opportunities -- 2.4.1. Electrical contacts between metals and 2D monolayers -- 2.4.2. 2D mobility limiting factors -- 2.4.3. 2D oxides -- 2.4.4. Advanced logic concepts -- 2.5. Conclusion and outlook -- 2.6. Acknowledgments -- 2.7. References -- Chapter 3. Negative Capacitance Field-Effect Transistors -- 3.1. Introduction -- 3.2. The rise of NC-FETs -- 3.3. Understanding NC-FETs from scratch -- 3.3.1. Electrostatics in a generic NC-FET -- 3.3.2. Formulating switching slope of a generic NC-FET -- 3.4. Fundamental challenges of NC-FET -- 3.4.1. NC does not help good FETs -- 3.4.2. Quantum capacitance may "kill" NC-FETs -- 3.5. Design and optimization of NC-FET -- 3.5.1. Designing NC-FET in the quantum capacitance limit -- 3.5.2. The role of NC nonlinearity.
3.5.3. IMG: borrow parasitic charge for polarization in NC -- 3.5.4. A practical role of NC for FETs: voltage-loss saver -- 3.6. Appendix: A rule for polarization dynamics-based interpretation of the subthermionic SS -- 3.7. References -- Chapter 4. Z2 Field-Effect Transistors -- 4.1. Introduction -- 4.2. Z2FET steady-state operation -- 4.2.1. Z2FET sharp switch evidence -- 4.2.2. Z2FET "S-shape" characteristic -- 4.2.3. Z2FET detailed description -- 4.3. Z2FET steady-state analytical and compact model -- 4.3.1. Z2FET steady-state analytical drain current model -- 4.3.2. Z2FET analytical evaluation of switching voltage -- 4.3.3. Z2FET compact model -- 4.4. Z2FET experimental evidence -- 4.4.1. Z2FET fabrication -- 4.4.3. Z2FET switching characteristic under gate sweep -- 4.4.4. Z2FET switching characteristic under drain sweep -- 4.5. Z2FET as 1T-DRAM -- 4.5.1. Z2FET 1T-DRAM operation description -- 4.5.2. Z2FET 1T-DRAM operation experimental evidence -- 4.6. Z2FET structure optimization -- 4.6.1. Z2FET DGP -- 4.6.2. Z3FET -- 4.7. Z2FET advanced applications -- 4.7.1. Z2FET as ESD -- 4.7.2. Z2FET as logic switch -- 4.7.3. Z2FET as photodetector -- 4.8. Conclusion -- 4.9. References -- Chapter 5. Two-Dimensional Spintronics -- 5.1. Introduction -- 5.2. Spintronics in 2D Rashba gases at oxide surfaces-interfaces -- 5.2.1. Emergent 2D conductivity at oxide interfaces -- 5.2.2. Rashba spin-orbit interactions -- 5.2.3. Spin-to-charge current conversion in oxide 2DEGs -- 5.2.4. Device applications and prospects -- 5.3. Spintronics in lateral spin devices in 2D materials -- 5.3.1. Introduction -- 5.3.2. Spin injection and detection -- 5.3.3. Spin precession -- 5.3.4. Mechanisms of spin relaxation -- 5.3.5. Spin transport in van der Waals heterostructures -- 5.4. 2D materials in magnetic tunnel junctions -- 5.4.1. Introduction. 5.4.2. First steps towards 2D material integration in magnetic tunnel junctions -- 5.4.3. Exfoliated and transferred devices: early results -- 5.4.4. Exfoliated and transferred devices: improvement through in situ definition -- 5.4.5. Direct CVD growth: the rise of large scale and high quality -- 5.4.6. Experimental evidences of 2D-based spin filtering in hybrid 2D-MTJs -- 5.4.7. Conclusion -- 5.5. Topological insulators in spintronics -- 5.5.1. Introduction -- 5.5.2. Spin-momentum locking and spin-charge interconversion -- 5.5.3. Materials, interfaces and fabrication methods -- 5.5.4. Spin-charge interconversion measurements -- 5.5.5. Conclusion and outlook -- 5.6. References -- Chapter 6. Valleytronics in 2D Materials -- 6.1. Introduction -- 6.2. Exciton and valley physics -- 6.2.1. Introduction to valleys and excitons -- 6.2.2. Valley physics -- 6.2.3. Spin orbit coupling and exotic excitons -- 6.3. Valley lifetime, transport and operations -- 6.3.1. Valley lifetime -- 6.3.2. Valley transport -- 6.3.3. Valley operations -- 6.4. Valleytronic devices and materials -- 6.5. Valleytronic computing -- 6.5.1. Classical computing - power and performance -- 6.5.2. Classical computing - architecture -- 6.5.3. Quantum computing -- 6.5.4. Outlook -- 6.6. References -- Chapter 7. Molecular Electronics: Electron, Spin and Thermal Transport through Molecules -- 7.1. Introduction -- 7.2. How to make a molecular junction -- 7.3. Electron transport in molecular devices: back to basics -- 7.4. Electron transport: DC and low frequency -- 7.5. Electron transport at high frequencies -- 7.6. Spin-dependent electron transport in molecular junctions -- 7.7. Molecular electronic plasmonics -- 7.8. Quantum interference and thermal transport -- 7.9. Noise in molecular junctions -- 7.10. Conclusion and further reading -- 7.11. References. Chapter 8. Superconducting Quantum Electronics -- 8.1. Introduction -- 8.1.1. A little bit of history -- 8.1.2. The Josephson junction -- 8.1.3. Superconducting quantum interference devices (SQUIDs) -- 8.1.4. Emergence of superconductor electronics -- 8.2. Passive superconducting electronics -- 8.2.1. Surface impedance of superconductors -- 8.2.2. Superconductor waveguides and transmission lines -- 8.2.3. Superconducting antennas -- 8.2.4. Superconducting filters -- 8.2.5. Microwave switches -- 8.3. Superconducting detectors -- 8.3.1. Transition edge sensors (TES) -- 8.3.2. Superconductor nanowire single-photon detectors (SNSPDs) -- 8.3.3. Kinetic inductance detectors (KIDs) -- 8.4. Superconducting digital electronics -- 8.4.1. Single flux quantum (SFQ) logic -- 8.4.2. Adiabatic quantum flux parametron (AQFP) logic -- 8.4.3. Towards superconducting computing -- 8.4.4. In-memory and quantum neuromorphic computing -- 8.4.5. Computer-aided design (CAD) tools -- 8.5. Superconducting quantum computing -- 8.5.1. Epistemological approach -- 8.5.2. Superconductor quantum bits (qubits) -- 8.5.3. Source of decoherence in qubits -- 8.5.4. Interface system for Josephson junction qubits -- 8.5.5. The qubit cavity -- 8.6. Cryogenic cooling -- 8.7. References -- Chapter 9. All-Optical Chips -- 9.1. Introduction -- 9.2. Nanophotonic circuits -- 9.2.1. Dielectric waveguides -- 9.2.2. Basic photonic devices -- 9.3. Phase change photonics -- 9.3.1. Switching dynamics of phase change materials -- 9.3.2. Waveguide-coupled phase change materials -- 9.4. Photonic tensor core -- 9.4.1. Optical multiply and accumulate operations -- 9.4.2. Design of the photonic tensor core -- 9.4.3. Parallel computing by wavelength division multiplexing -- 9.4.4. Photonic tensor core prototype -- 9.5. Optical artificial neural network -- 9.5.1. Artificial neural networks. 9.5.2. Nonlinear activation unit -- 9.5.3. Optical neuron prototype -- 9.6. Challenges and outlook -- 9.7. References -- List of Authors -- Index -- EULA. |
Record Nr. | UNINA-9910830743503321 |
London, England : , : ISTE Ltd and John Wiley & Sons, Inc., , [2023] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Data-Driven Scheduling of Semiconductor Manufacturing Systems / / by Li Li, Qingyun Yu, Kuo-Yi Lin, Yumin Ma, Fei Qiao |
Autore | Li Li <1894-1962, > |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (276 pages) |
Disciplina | 810 |
Collana | Advanced and Intelligent Manufacturing in China |
Soggetto topico |
Electronics
Computational intelligence Industrial engineering Production engineering Engineering—Data processing Electronics and Microelectronics, Instrumentation Computational Intelligence Industrial and Production Engineering Data Engineering |
Soggetto non controllato |
Engineering
Industrial Engineering Electronics Technology & Engineering |
ISBN |
9789811975882
9789811975875 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Semiconductor Manufacturing System Scheduling -- Data-driven Scheduling Framework of Semiconductor Manufacturing System -- Data Preprocessing of Semiconductor Manufacturing System -- Correlation Analysis of Performance Index of Semiconductor Production Line -- Data-driven Feeding Control of Semiconductor Manufacturing System -- Dynamic Scheduling of Semiconductor Manufacturing System Driven by Data -- Dynamic Scheduling of Performance-Driven Semiconductor Manufacturing System -- Development Trend of Semiconductor Manufacturing System Scheduling in Big Data Environment. |
Record Nr. | UNINA-9910726289103321 |
Li Li <1894-1962, >
![]() |
||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Die Grundlagen der Quantenmechanik / Günther Ludwig |
Autore | Ludwig, Günther |
Pubbl/distr/stampa | Berlin, : Springer, 1954 |
Descrizione fisica | xii, 460 p. : ill. ; 24 cm |
Soggetto topico | 81-XX - Quantum theory [MSC 2020] |
Soggetto non controllato |
Electrical Engineering
Electronics Engineering Mechanics Quantum mechanics |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ger |
Record Nr. | UNICAMPANIA-VAN0254311 |
Ludwig, Günther
![]() |
||
Berlin, : Springer, 1954 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|