top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Electronic Circuits : Principles, Architectures and Applications on Emerging Technologies / / Mingbo Niu, editor
Advanced Electronic Circuits : Principles, Architectures and Applications on Emerging Technologies / / Mingbo Niu, editor
Autore Mingbo Niu
Pubbl/distr/stampa IntechOpen, 2018
Descrizione fisica 1 online resource (viii, 183 pages) : illustrations
Disciplina 621.3815
Soggetto topico Electronic circuit design
Soggetto non controllato Engineering
Physical Sciences
Engineering and Technology
Electrical and Electronic Engineering
Electronic Circuits
ISBN 1-83881-420-5
1-78923-207-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Advanced electronic circuits
Record Nr. UNINA-9910317814103321
Mingbo Niu  
IntechOpen, 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Beyond-CMOS : state of the art and trends / / edited by Alessandro Cresti
Beyond-CMOS : state of the art and trends / / edited by Alessandro Cresti
Edizione [First edition.]
Pubbl/distr/stampa London, England : , : ISTE Ltd and John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (443 pages)
Disciplina 621.381
Soggetto topico Digital electronics
Soggetto non controllato Electronic Circuits
Electronics
Technology & Engineering
ISBN 1-394-22871-6
1-394-22869-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1. Tunnel Field-Effect Transistors Based on III-V Semiconductors -- 1.1. Introduction -- 1.2. Experiments -- 1.3. Simulation of III-V-based TFETs -- 1.3.1. The k.p model in the NEGF formalism -- 1.4. SS degradation mechanisms -- 1.4.1. Electrostatic integrity -- 1.4.2. Trap-assisted tunneling -- 1.4.3. Surface roughness -- 1.5. Strategies to improve the on-state current -- 1.5.1. Strain -- 1.5.2. Broken-gap hetero-structures -- 1.5.3. Molar fraction grading of the source material -- 1.6. Conclusion -- 1.7. References -- Chapter 2. Field-Effect Transistors Based on 2D Materials: A Modeling Perspective -- 2.1. Introduction -- 2.1.1. Future of Moore's law -- 2.1.2. The potential of 2D materials -- 2.2. Modeling approach -- 2.2.1. Requirements and state of the art -- 2.2.2. Maximally localized Wannier functions (MLWFs) -- 2.2.3. Towards ab initio quantum transport simulations -- 2.3. 2D device performance analysis -- 2.3.1. MoS2 and other TMDs -- 2.3.2. Novel 2D materials -- 2.4. Challenges and opportunities -- 2.4.1. Electrical contacts between metals and 2D monolayers -- 2.4.2. 2D mobility limiting factors -- 2.4.3. 2D oxides -- 2.4.4. Advanced logic concepts -- 2.5. Conclusion and outlook -- 2.6. Acknowledgments -- 2.7. References -- Chapter 3. Negative Capacitance Field-Effect Transistors -- 3.1. Introduction -- 3.2. The rise of NC-FETs -- 3.3. Understanding NC-FETs from scratch -- 3.3.1. Electrostatics in a generic NC-FET -- 3.3.2. Formulating switching slope of a generic NC-FET -- 3.4. Fundamental challenges of NC-FET -- 3.4.1. NC does not help good FETs -- 3.4.2. Quantum capacitance may "kill" NC-FETs -- 3.5. Design and optimization of NC-FET -- 3.5.1. Designing NC-FET in the quantum capacitance limit -- 3.5.2. The role of NC nonlinearity.
3.5.3. IMG: borrow parasitic charge for polarization in NC -- 3.5.4. A practical role of NC for FETs: voltage-loss saver -- 3.6. Appendix: A rule for polarization dynamics-based interpretation of the subthermionic SS -- 3.7. References -- Chapter 4. Z2 Field-Effect Transistors -- 4.1. Introduction -- 4.2. Z2FET steady-state operation -- 4.2.1. Z2FET sharp switch evidence -- 4.2.2. Z2FET "S-shape" characteristic -- 4.2.3. Z2FET detailed description -- 4.3. Z2FET steady-state analytical and compact model -- 4.3.1. Z2FET steady-state analytical drain current model -- 4.3.2. Z2FET analytical evaluation of switching voltage -- 4.3.3. Z2FET compact model -- 4.4. Z2FET experimental evidence -- 4.4.1. Z2FET fabrication -- 4.4.3. Z2FET switching characteristic under gate sweep -- 4.4.4. Z2FET switching characteristic under drain sweep -- 4.5. Z2FET as 1T-DRAM -- 4.5.1. Z2FET 1T-DRAM operation description -- 4.5.2. Z2FET 1T-DRAM operation experimental evidence -- 4.6. Z2FET structure optimization -- 4.6.1. Z2FET DGP -- 4.6.2. Z3FET -- 4.7. Z2FET advanced applications -- 4.7.1. Z2FET as ESD -- 4.7.2. Z2FET as logic switch -- 4.7.3. Z2FET as photodetector -- 4.8. Conclusion -- 4.9. References -- Chapter 5. Two-Dimensional Spintronics -- 5.1. Introduction -- 5.2. Spintronics in 2D Rashba gases at oxide surfaces-interfaces -- 5.2.1. Emergent 2D conductivity at oxide interfaces -- 5.2.2. Rashba spin-orbit interactions -- 5.2.3. Spin-to-charge current conversion in oxide 2DEGs -- 5.2.4. Device applications and prospects -- 5.3. Spintronics in lateral spin devices in 2D materials -- 5.3.1. Introduction -- 5.3.2. Spin injection and detection -- 5.3.3. Spin precession -- 5.3.4. Mechanisms of spin relaxation -- 5.3.5. Spin transport in van der Waals heterostructures -- 5.4. 2D materials in magnetic tunnel junctions -- 5.4.1. Introduction.
5.4.2. First steps towards 2D material integration in magnetic tunnel junctions -- 5.4.3. Exfoliated and transferred devices: early results -- 5.4.4. Exfoliated and transferred devices: improvement through in situ definition -- 5.4.5. Direct CVD growth: the rise of large scale and high quality -- 5.4.6. Experimental evidences of 2D-based spin filtering in hybrid 2D-MTJs -- 5.4.7. Conclusion -- 5.5. Topological insulators in spintronics -- 5.5.1. Introduction -- 5.5.2. Spin-momentum locking and spin-charge interconversion -- 5.5.3. Materials, interfaces and fabrication methods -- 5.5.4. Spin-charge interconversion measurements -- 5.5.5. Conclusion and outlook -- 5.6. References -- Chapter 6. Valleytronics in 2D Materials -- 6.1. Introduction -- 6.2. Exciton and valley physics -- 6.2.1. Introduction to valleys and excitons -- 6.2.2. Valley physics -- 6.2.3. Spin orbit coupling and exotic excitons -- 6.3. Valley lifetime, transport and operations -- 6.3.1. Valley lifetime -- 6.3.2. Valley transport -- 6.3.3. Valley operations -- 6.4. Valleytronic devices and materials -- 6.5. Valleytronic computing -- 6.5.1. Classical computing - power and performance -- 6.5.2. Classical computing - architecture -- 6.5.3. Quantum computing -- 6.5.4. Outlook -- 6.6. References -- Chapter 7. Molecular Electronics: Electron, Spin and Thermal Transport through Molecules -- 7.1. Introduction -- 7.2. How to make a molecular junction -- 7.3. Electron transport in molecular devices: back to basics -- 7.4. Electron transport: DC and low frequency -- 7.5. Electron transport at high frequencies -- 7.6. Spin-dependent electron transport in molecular junctions -- 7.7. Molecular electronic plasmonics -- 7.8. Quantum interference and thermal transport -- 7.9. Noise in molecular junctions -- 7.10. Conclusion and further reading -- 7.11. References.
Chapter 8. Superconducting Quantum Electronics -- 8.1. Introduction -- 8.1.1. A little bit of history -- 8.1.2. The Josephson junction -- 8.1.3. Superconducting quantum interference devices (SQUIDs) -- 8.1.4. Emergence of superconductor electronics -- 8.2. Passive superconducting electronics -- 8.2.1. Surface impedance of superconductors -- 8.2.2. Superconductor waveguides and transmission lines -- 8.2.3. Superconducting antennas -- 8.2.4. Superconducting filters -- 8.2.5. Microwave switches -- 8.3. Superconducting detectors -- 8.3.1. Transition edge sensors (TES) -- 8.3.2. Superconductor nanowire single-photon detectors (SNSPDs) -- 8.3.3. Kinetic inductance detectors (KIDs) -- 8.4. Superconducting digital electronics -- 8.4.1. Single flux quantum (SFQ) logic -- 8.4.2. Adiabatic quantum flux parametron (AQFP) logic -- 8.4.3. Towards superconducting computing -- 8.4.4. In-memory and quantum neuromorphic computing -- 8.4.5. Computer-aided design (CAD) tools -- 8.5. Superconducting quantum computing -- 8.5.1. Epistemological approach -- 8.5.2. Superconductor quantum bits (qubits) -- 8.5.3. Source of decoherence in qubits -- 8.5.4. Interface system for Josephson junction qubits -- 8.5.5. The qubit cavity -- 8.6. Cryogenic cooling -- 8.7. References -- Chapter 9. All-Optical Chips -- 9.1. Introduction -- 9.2. Nanophotonic circuits -- 9.2.1. Dielectric waveguides -- 9.2.2. Basic photonic devices -- 9.3. Phase change photonics -- 9.3.1. Switching dynamics of phase change materials -- 9.3.2. Waveguide-coupled phase change materials -- 9.4. Photonic tensor core -- 9.4.1. Optical multiply and accumulate operations -- 9.4.2. Design of the photonic tensor core -- 9.4.3. Parallel computing by wavelength division multiplexing -- 9.4.4. Photonic tensor core prototype -- 9.5. Optical artificial neural network -- 9.5.1. Artificial neural networks.
9.5.2. Nonlinear activation unit -- 9.5.3. Optical neuron prototype -- 9.6. Challenges and outlook -- 9.7. References -- List of Authors -- Index -- EULA.
Record Nr. UNINA-9910830743503321
London, England : , : ISTE Ltd and John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The ESD handbook / / Steven H. Voldman
The ESD handbook / / Steven H. Voldman
Autore Voldman Steven H.
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2021
Descrizione fisica 1 online resource (1122 pages) : illustrations
Disciplina 537.52
Soggetto topico Electric discharges
Semiconductors - Protection
Breakdown (Electricity)
Soggetto non controllato Electronic Circuits
Technology & Engineering
ISBN 1-119-23309-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Author xxxvii Acknowledgements xxxix 1 ESD, EOS, EMI, EMC, and Latchup 1 1.1 Electrostatic Discharge (ESD) 1 1.2 Human Body Model (HBM) 2 1.3 Machine Model (MM) 3 1.4 Cassette Model 3 1.5 Charged Device Model (CDM) 4 1.6 Transmission Line Pulse (TLP) 5 1.7 Very Fast Transmission Line Pulse (VF-TLP) 8 1.8 Electrical Overstress (EOS) 8 1.9 Electrical Overstress (EOS) 8 1.10 EOS Sources - Lightning 9 1.11 EOS Sources - Electromagnetic Pulse (EMP) 9 1.12 EOS Sources - Machinery 10 1.13 EOS Sources - Power Distribution 10 1.14 EOS Sources - Switches, Relays, and Coils 10 1.15 EOS Design Flow and Product Definition 10 1.16 EOS Sources - Design Issues 11 1.17 Electromagnetic Interference (EMI) 12 1.18 Electromagnetic Compatibility (EMC) 13 1.19 Latchup 13 Questions and Answers 14 1.20 Summary and Closing Comments 15 References 15 2 ESD in Manufacturing 21 2.1 Flooring 21 2.2 Work Surfaces 21 2.3 Garments 22 2.4 Wrist Straps 22 2.5 Shoes - Footwear 22 2.6 Ionization 23 2.7 Clean Rooms 24 2.8 Carts 26 2.9 Shipping Tubes 26 2.10 Trays 27 2.11 Measurements 27 2.12 Verification 28 2.13 Audit 28 2.14 Triboelectric Charging - How Does it Happen? 29 2.15 Conductors, Semiconductors, and Insulators 30 2.16 Static Dissipative Materials 30 2.17 ESD and Materials 31 2.18 Electrification and Coulomb's Law 31 2.19 Electromagnetism and Electrodynamics 33 2.20 Electrical Breakdown 33 2.21 Electro-Quasistatics and Magnetoquasistatics 36 2.22 Electrodynamics and Maxwell's Equations 36 2.23 Electrostatic Discharge (ESD) 36 2.24 Electromagnetic Compatibility (EMC) 37 2.25 Electromagnetic Interference (EMI) 37 2.26 Fundamentals of Manufacturing and Electrostatics 37 2.27 Materials, Tooling, Human Factors, and Electrostatic Discharge 38 2.28 Materials and Human-induced Electric Fields 39 2.29 Manufacturing Environment and Tooling 39 2.30 Manufacturing Equipment and ESD Manufacturing Problems 39 2.31 Manufacturing Materials 39 2.32 Measurement and Test Equipment 40 2.33 Manufacturing Testing for Compliance 41 2.34 Grounding and Bonding Systems 42 2.35 Work Surfaces 42 2.36 Wrist Straps 43 2.37 Constant Monitors 43 2.38 Footwear 43 2.39 Floors 44 2.40 Personnel Grounding with Garments 44 2.41 Garments 44 2.42 Air Ionization 44 2.43 Seating 45 2.44 Packaging and Shipping 46 2.45 Trays 46 2.46 ESD Identification 46 2.47 ESD Program Auditing 46 2.48 ESD On-Chip Protection 47 2.49 ESD, EOS, EMI, EMC, and Latchup 47 2.50 Manufacturing Electrical Overstress (EOS) 48 2.51 EMI 50 2.52 EMC 50 2.53 Summary and Closing Comments 50 References 50 3 ESD Standards 55 3.1 Factory - Flooring 55 3.2 Factory - Resistance Measurement of Materials 56 3.3 JEDEC 58 3.4 International Electro-Technical Commission (IEC) 59 3.5 IEEE 59 3.6 Department of Defense (DOD) 59 3.7 Military Standards 59 3.8 SAE 60 3.9 Summary and Closing Comments 60 Questions and Answers 60 References 61 4 ESD Testing 65 4.1 Electrostatic Discharge (ESD) Testing 65 4.2 ESD Models 65 4.3 HBM Test System 69 4.4 HBM Two-pin Test System 69 4.5 Machine Model (MM) 69 4.6 Small Charge Model (SCM) 70 4.7 Small Charge Model Source 71 4.8 CDM Pulse Waveform 72 4.9 HMM Equivalent Circuit 77 4.10 HMM Test Equipment 77 4.11 HMM Test Configuration 78 4.12 HMM Fixture Board 78 4.13 Transmission Line Pulse (TLP) 82 4.14 TLP Test Systems 84 4.15 IEC 61000-4-2 87 4.16 Equivalent Circuit 89 4.17 Test Equipment 89 4.18 Cable Discharge Event (CDE) 90 4.19 CDE Pulse Waveform 93 4.20 Equivalent Circuit 93 4.21 Commercial Test Systems 94 4.22 Systems Electromagnetic Interference (EMI) 95 4.23 Electromagnetic Compatibility (EMC) 95 4.24 Electrical Overstress (EOS) 95 4.25 Latchup 95 4.26 Electrical Overstress (EOS) 95 4.27 EOS Sources - Lightning 96 4.28 EOS Sources - Electromagnetic Pulse (EMP) 97 4.29 Electromagnetic Compatibility 97 4.30 Summary and Closing Comments 100 References 100 5 ESD Device Physics 117 5.1 Electro-thermal Instability 117 5.2 Stable System 118 5.3 Unstable System 118 5.4 Differential Relation of Voltage and Current 120 5.5 Time Constant Hierarchy 121 5.6 Thermal Physics Time Constants 121 5.7 Adiabatic, Thermal Diffusion Time Scale and Steady State 121 5.8 Electro-quasistatic and Magnetoquasistatics 122 5.9 Electrical Instability 124 5.10 Thermal Physics Time Constants 125 5.11 Adiabatic, Thermal Diffusion Time Scale and Steady State 126 5.12 Electrical Instability and Breakdown 126 5.13 Spatial Instability and Electro-thermal Current Constriction 127 5.14 Equipotential Surface 127 5.15 Heat Flow 128 5.16 Conservation of Heat 128 5.17 Electric Potential and Temperature Gradient 128 5.18 Electric Energy, Resistivity, and Thermal Conductivity 129 5.19 Breakdown 131 5.20 Electron Current Continuity Relationship 136 5.21 Air Breakdown and Peak Currents 138 5.22 Electro-thermal Instability 139 5.23 Mathematical Methods - Green's Function and Method of Images 141 5.24 Mathematical Methods - Green's Function and Method of Images 143 5.25 Mathematical Methods - Integral Transforms of the Heat Conduction Equation 148 5.26 Flux Potential Transfer Relations Matrix Methodology 152 5.27 Heat Equation Variable Conductivity 154 5.28 Mathematical Methods - Boltzmann Transformation 156 5.29 Mathematical Methods - The Duhamel Formulation 158 5.30 Spherical Source Tasca Model 160 5.31 Wunsch-Bell Model 163 5.32 The Smith and Littau Model 166 5.33 The Arkihpov-Astvatsaturyan-Godovosyn-Rudenko Model 168 5.34 The Vlasov-Sinkevitch Model 169 5.35 The Dwyer, Franklin and Campbell Model 169 5.36 Negative Differential Resistor and Resistor Ballasting 174 5.37 Ash Model - Nonlinear Failure Power Thresholds 176 5.38 Statistical Models for ESD Prediction 178 5.39 Summary and Closing Comments 180 References 180 6 ESD Events and Protection Circuits 189 6.1 Human Body Model (HBM) 189 6.2 Machine Model (MM) 191 6.3 Charged Device Model 193 6.4 Human Metal Model (HMM) 197 6.5 IEC 61000-4-2 History 204 6.6 IEC 61000-4-5 209 6.7 Cable Discharge Event (CDE) 213 6.8 CDM Scope 215 References 219 7 ESD Failure Mechanism 235 7.1 Tables of CMOS ESD Failure Mechanisms 235 7.2 LOCOS Isolation-Defined CMOS 235 7.3 LOCOS-bound Thick Oxide MOSFET 241 7.4 LOCOS-Bound Structures 242 7.5 Shallow Trench Isolation (STI) 245 7.6 STI Pull-down ESD Failure Mechanism 245 7.7 STI Pull-Down and Gate Wrap-Around 246 7.8 MOSFETs 247 7.9 LOCOS-bound Thick Oxide MOSFET 252 7.10 Bipolar Transistor Devices 254 7.11 Silicide Blocked N-diffusion Resistors 259 7.12 Silicon Germanium ESD Failure Mechanisms 259 7.13 Silicon Germanium Carbon ESD Failure Mechanisms 259 7.14 Gallium Arsenide Technology ESD Failure Mechanisms 260 7.15 Indium Gallium Arsenide ESD Failure Mechanisms 261 7.16 Micro Electromechanical (MEM) Systems 263 7.17 Micro-mirror Array Failures 265 7.18 EOS Bond Pad and Interconnect Failure 269 7.19 Summary and Closing Comments 272 References 273 8 ESD Design Synthesis 281 8.1 ESD Design Synthesis and Architecture Flow 281 8.2 ESD Design - the Signal Path and the Alternate Current Path 287 8.3 ESD Electrical Circuit and Schematic Architecture Concepts 289 8.4 The Ideal ESD Network 289 8.5 Mapping Semiconductor Chips and ESD Designs 293 8.6 Mapping across Semiconductor Fabricators 294 8.7 ESD Design Mapping across Technology Generations 295 8.8 ESD Networks, Sequencing, and Chip Architecture 306 8.9 ESD Layout and Floorplan-related Concepts 314 8.10 ESD Architecture and Floor-planning 323 8.11 Digital and Analog CMOS Architecture 347 8.12 Digital and Analog Floorplan - Placement of Analog Circuits 348 8.13 Mixed-signal Architecture - Digital, Analog, and RF Architecture 350 8.14 Summary and Closing Comments 351 Questions 351 References 352 9 On-chip ESD Protection Circuits - Input Circuitry 363 9.1 Receivers and ESD 363 9.2 Receivers and Receiver Delay Time 363 9.3 ESD Loading Effect on Receiver Performance 364 9.4 Receivers and HBM 365 9.5 Receivers and CDM 366 9.6 Receivers and Receiver Evolution 368 9.7 Receiver Circuits with Half-pass Transmission Gate 368 9.8 Receiver with Full-pass Transmission Gate 371 9.9 Receiver, Half-pass Transmission Gate, and Keeper Network 373 9.10 Receiver, Half-pass Transmission Gate, and the Modified Keeper Network 377 9.11 Receiver Circuits with Pseudo-zero VT Half-pass Transmission Gates 379 9.12 Receiver with Zero VT Transmission Gate 381 9.13 Receiver Circuits with Bleed Transistors 383 9.14 Receiver Circuits with Test Functions 384 9.15 Receiver with.
Schmitt Trigger Feedback Network 385 9.16 Bipolar Transistor Receivers 389 9.17 CMOS Differential Receiver with Analog Layout Concepts 397 9.18 CMOS Differential Receiver Capacitance Loading 398 9.19 CMOS Differential Receiver ESD Mismatch 398 9.20 Analog Differential Pair ESD Signal Pin Matching with CommonWell Layout 400 9.21 Analog Differential Pair Common Centroid Design Layout - Signal-Pin to Signal-Pin and Parasitic ESD Elements 403 9.22 Off-chip Drivers (OCD) 405 9.23 Off-chip Driver I/O Standards and ESD 407 9.24 Off-chip Driver (OCD) ESD Design Basics 408 9.25 Off-chip Drivers (OCD): Mixed Voltage Interface 414 9.26 Off-chip Drivers (OCD): Self-bias Well OCD Networks 414 9.27 Self-bias Well Off-chip Driver (OCD) Networks 415 9.28 ESD Protection Networks for Self-bias Well OCD Networks 417 9.29 Programmable Impedance Off-chip Driver (OCD) Network 418 9.30 ESD Input Protection Networks for Programmable Impedance Off-chip Drivers 422 9.31 Universal Off-chip Drivers 423 9.32 Gate Array Off-chip Driver Design 423 9.33 Gate Array OCD Design - Impedance Matching of Unused Elements 425 9.34 OCD ESD Design - Power Rails Over Multi-finger MOSFETs 426 9.35 Off-chip Driver: Gate-modulated MOSFET ESD Network 427 9.36 Off-chip Driver Simplified Gate Modulated Network 428 9.37 Off-chip Drivers ESD Design: Integration of Coupling and Ballasting Techniques 428 9.38 Ballasting and Coupling 429 9.39 MOSFET Source-initiated Gate-bootstrapped Resistor Ballasted Multi-finger MOSFET with Diode 429 9.40 MOSFET Source-initiated Gate-bootstrapped Resistor Ballasted Multi-finger MOSFET with a MOSFET 430 9.41 Gate-coupled Domino Resistor-ballasted MOSFET 431 9.42 Substrate-modulated Resistor Ballasted MOSFET 433 9.43 Summary and Closing Comments 434 Problems 435 References 437 10 On-Chip ESD Protection Circuits - ESD Power Clamps 441 10.1 ESD Power Clamps 441 10.2 ESD Power Clamp Design Practices 441 10.3 Current Loops 442 10.4 Impedance 442 10.5 Segmentation 443 10.6 Voltage Limitations 443 10.7 Latchup 443 10.8 ESD Power Clamp Circuits 444 10.9 Classification of ESD Power Clamps 444 10.10 Master-Slave ESD Power Clamps 445 10.11 Trigger Networks 445 10.12 ESD Power Clamp Characteristics and Issues 445 10.13 Design Synthesis of ESD Power Clamp - Key Design Parameters 446 10.14 Design Synthesis of ESD Power Clamps Trigger Networks 446 10.15 Transient Response Frequency Trigger Element and the ESD Frequency Window 446 10.16 ESD Power Clamp Frequency Design Window 447 10.17 Design Synthesis of ESD Power Clamp - Voltage Triggered ESD Trigger Elements 448 10.18 Design Synthesis of ESD Power Clamp - The ESD Power Clamp Shunting Element 449 10.19 ESD Power Clamp Trigger Condition vs. Shunt Failure 450 10.20 ESD Clamp Element - Width Scaling 450 10.21 ESD Clamp Element - On-resistance 450 10.22 ESD Clamp Element - Safe Operating Area (SOA) 451 10.23 ESD Power Clamp Issues 451 10.24 ESD Power Clamp Issues - Power-up and Power-down 451 10.25 ESD Power Clamp Issues - False Triggering 452 10.26 ESD Power Clamp Issues - Pre-charging 452 10.27 ESD Power Clamp Issues - Post-charging 452 10.28 ESD Power Clamp Design 453 10.29 ESD Power Clamp Design Synthesis - Forward Bias Triggered ESD Power Clamps 456 10.30 Series Stacked RC-triggered ESD Power Clamps 459 10.31 Triple Well Diode String ESD Power Clamp 463 10.32 Bipolar ESD Power Clamps 464 10.33 ESD Power Clamp Design Synthesis - Bipolar ESD Power Clamps 469 10.34 Bipolar ESD Power Clamps with Frequency Trigger Elements: Capacitance-triggered 480 10.35 Silicon Controlled Rectifier Power Clamps 481 References 486 11 ESD Architecture and Floor Planning 491 11.1 ESD Design Floor Plan 491 11.2 Peripheral I/O Design 492 11.3 Pad Limited Peripheral I/O Design Architecture 493 11.4 Pad Limited Peripheral I/O Design Architecture - Staggered I/O 493 11.5 Core Limited Peripheral I/O Design Architecture 495 11.6 Lumped ESD Power Clamp in Peripheral I/O Design Architecture 496 11.7 Lumped ESD Power Clamp in Peripheral I/O Design Architecture in the Semiconductor Chip Corners 496 11.8 Lumped ESD Power Clamp in Peripheral I/O Design Architecture - Power Pads 497 11.9 Lumped ESD Power Clamp in Peripheral I/O Design Architecture - Master/Slave ESD Power Clamp System 498 11.10 Array I/O 498 11.11 Array I/O Nibble Architecture 501 11.12 Array I/O Pair Architecture 503 11.13 Array I/O - Fully Distributed 504 11.14 ESD Architecture - Dummy Bus Architecture 507 11.15 ESD Architecture - Dummy VDD Bus 507 11.16 ESD Architecture - Dummy Ground (VSS) Bus 508 11.17 Native Voltage Power Supply Architecture 508 11.18 Single Power Supply Architecture 509 11.19 Mixed Voltage Architecture 509 11.20 Mixed Voltage Architecture - Single Power Supply 509 11.21 Mixed Voltage Architecture - Dual Power Supply 511 11.22 Mixed Signal Architecture 514 11.23 Digital and Analog Floor Plan - Placement of Analog Circuits 515 11.24 Mixed Signal Architecture - Digital, Analog, and RF Architecture 518 11.25 ESD Power Grid Design 519 11.26 I/O to Core Guard Rings 525 11.27 Within I/O Guard Rings 527 11.28 ESD-to-I/O Off-Chip Driver (OCD) Guard Ring 527 11.29 Guard Rings and Computer Aided Design (CAD) Methods 539 11.30 Summary and Closing Comments 541 References 541 12 ESD Digital Design 551 12.1 Fundamental Concepts of ESD Design 551 12.2 Concepts of ESD Digital Design 551 12.3 Device Response to External Events 552 12.4 Alternative Current Loops 553 12.5 Decoupling of Feedback Loops 554 12.6 Decoupling of Power Rails 554 12.7 Local and Global Distribution 554 12.8 Usage of Parasitic Elements 555 12.9 Unused Section of a Semiconductor Device, Circuit, or Chip Function 556 12.10 Unused Corners 556 12.11 Unused White Space 556 12.12 Impedance Matching Between Floating and Non-floating Networks 556 12.13 Unconnected Structures 557 12.14 Symmetry 557 12.15 Design Synthesis 557 12.16 ESD, Latchup, and Noise 559 12.17 Structures Under Bond Pads 574 12.18 Summary and Closing Comments 575 References 576 13 ESD Analog Design 583 13.1 Analog Design: Local Matching 583 13.2 Analog Design: Global Matching 583 13.3 Symmetry 584 13.4 Analog Design - Local Matching 584 13.5 Analog Design - Global Matching 584 13.6 Common Centroid Design 586 13.7 Common Centroid Arrays 586 13.8 Interdigitation Design 586 13.9 Common Centroid and Interdigitation Design 587 13.10 Dummy Resistor Layout 593 13.11 Thermoelectric Cancelation Layout 593 13.12 Electrostatic Shield 593 13.13 Interdigitated Resistors and ESD Parasitics 594 13.14 Capacitor Element Design 595 13.15 Inductor Element Design 596 13.16 ESD Failure in Inductors 597 13.17 Inductor Physical Variables 598 13.18 Inductor Element Design 599 13.19 Diode Design 599 13.20 Analog ESD Circuits 602 13.21 ESD MOSFETs 607 13.24 Analog Differential Pair Common Centroid Design Layout - Signal-pin to Signal-pin and Parasitic ESD Elements 620 13.25 Summary and Closing Comments 624 References 624 14 ESD RF Design 629 14.1 Fundamental Concepts of ESD Design 629 14.2 Fundamental Concepts of RF ESD Design 632 14.3 RF CMOS Input Circuits 637 14.4 RF CMOS Impedance Isolation LC Resonator ESD Networks 647 14.5 RF CMOS LC-diode Networks Experimental Results 648 14.6 RF CMOS LNA ESD Design - Low Resistance ESD Inductor and ESD Diode Clamping Elements in Π-configuration 650 14.7 RF CMOS T-coil Inductor ESD Input Network 653 14.8 RF CMOS Distributed ESD Networks 655 14.9 RF CMOS Distributed ESD-RF Networks 656 14.10 RF CMOS Distributed RF-ESD Networks Using Series Inductors and Dual-diode Shunts 656 14.11 RF CMOS Distributed RF-ESD Networks Using Series Inductors and MOSFET Parallel Shunts 659 14.12 RF CMOS Distributed ESD Networks - Transmission Lines and Co-planar Waveguides 661 14.13 RF CMOS - ESD and RF LDMOS Power Technology 663 14.14 Summary and Closing Comments 666 References 666 15 ESD Power Electronics Design 681 15.1 Reliability Technology Scaling and the Reliability Bathtub Curve 681 15.2 Input Circuitry 686 15.3 Summary and Closing Comments 702 References 702 16 ESD in Advanced CMOS 709 16.1 Interconnects and ESD 709 16.2 Aluminum Interconnects 710 16.3 Interconnects - Vias 714 16.4 Interconnects - Wiring 715 16.5 Junctions 719 16.6 Titanium Silicide 725 16.7 Shallow Trench Isolation 731 16.8 LOCOS-bound ESD Structures 734 16.9 LOCOS-bound p+/n-well Junction Diodes 734 16.10 LOCOS-bound n+ Junction Diodes 736 16.11 LOCOS-bound n-well/Substrate Diodes 737 16.12.
LOCOS-bound Lateral N-Well to N-Well Bipolar ESD Element 738 16.13 LOCOS-bound Lateral N+ to N-well Bipolar ESD Element 738 16.14 LOCOS-bound Lateral pnp Bipolar ESD Element 739 16.15 LOCOS-bound Thick Oxide MOSFET ESD Element 739 16.16 Shallow Trench Isolation 739 16.17 STI-bound ESD Structures 741 16.18 Substrate Modeling - Electrical and Thermal Discretization 746 16.19 Heavily Doped Substrates 750 16.20 Retrograde Wells and ESD Scaling 766 16.21 Triple Well and Isolated MOSFET CMOS 775 16.22 Summary and Closing Comments 779 References 779 17 ESD in Silicon on Insulator 783 17.1 Silicon on Insulator (SOI) Technologies 783 17.2 Elimination of CMOS Latchup 784 17.3 Lack of Vertical Bipolar Transistors 785 17.4 Floating Gate Tie Downs 785 17.5 Physical Separation of MOSFETs from the Bulk Substrate 785 17.6 SOI ESD Design Fundamental Concepts 786 17.7 SOI Lateral Diode Structure 791 17.8 Transistors - Bulk versus SOI Technology 791 17.9 SOI Buried Resistors (BR) Elements 796 17.10 Dynamic Threshold MOS (DTMOS) SOI MOSFET 797 17.11 SOI P+ Body Contact Abutting n+ Drain 798 17.12 Transmission Line Pulse (TLP) Testing of SOI Diode Designs 798 17.13 SOI ESD with MOSFET Drain and Body Width Ratio Variation 799 17.14 SOI Dual-Gate MOSFET Structure 799 17.15 SOI ESD Design - Mixed Voltage T-Shape Layout Style 800 17.16 SOI ESD Design: Double Diode Network 802 17.17 Bulk to SOI ESD Design Remapping 803 17.18 SOI ESD Diode Design Parameters 804 17.19 SOI ESD Design in Mixed Voltage Interface Environments 808 17.20 Comparison of Bulk with SOI ESD Results 809 17.21 SOI ESD Design with Aluminum Interconnects 810 17.22 SOI ESD Design with Copper Interconnects 812 17.23 SOI ESD Design with Gate Circuitry 813 17.24 Summary and Closing Comments 815 References 815 18 ESD in Analog Circuits 821 18.1 Analog Design Circuits 821 18.2 Single-ended Receivers 822 18.3 Schmitt Trigger Receivers 822 18.4 Differential Receivers 822 18.5 Comparators 824 18.6 Current Sources 825 18.7 Current Mirrors 825 18.8 Widlar Current Mirror 826 18.9 Wilson Current Mirror 826 18.10 Voltage Regulators 827 18.11 Buck Converters 828 18.12 Boost Converters 828 18.13 Buck-Boost Converters 829 18.14 Cuk Converters 830 18.15 Voltage Reference Circuits 830 18.16 Brokaw Bandgap Voltage Reference 830 18.17 Converters 831 18.18 Analog-to-Digital Converter (ADC) 831 18.19 Digital-to-Analog Converters (DAC) 832 18.20 Oscillators 832 18.21 Phase Lock Loop (PLL) Circuits 832 18.22 Delay Locked Loop (DLL) 833 18.23 Analog and ESD Design Synthesis 833 18.24 Analog Chip Architecture - Separation of Analog Power from Digital Power, AVDD-DVDD 836 18.25 ESD Failure in Phase Lock Loop (PLL) and System Clock 837 18.26 ESD Failure in Current Mirrors 837 18.27 ESD Failure in Schmitt Trigger Receivers 838 18.28 ESD Design Practice - Prevent ESD Failure in Schmitt Trigger 840 18.29 Analog-Digital Architecture: Isolated Digital and Analog Domains 841 18.30 ESD Protection Solution - Connectivity of AVDD-to-VDD 842 18.31 ESD Solution: Connectivity of AVSS-to-DVSS 843 18.32 Digital and Analog Domain with ESD Power Clamps 843 18.33 Digital and Analog Domain with Master-Slave ESD Power Clamps 846 18.34 High Voltage, Digital, and Analog Domain Floorplan 846 18.35 Floor-planning of Digital and Analog 846 18.36 Inter-domain Signal Lines ESD Failures 849 18.37 Digital-to-Analog Signal Line ESD Failures 849 18.38 Digital-to-Analog Core Spatial Isolation 851 18.39 Digital-to-Analog Core Ground Coupling 851 18.40 Digital-to-Analog Core Resistive Ground Coupling 852 18.41 Digital-to-Analog Core Diode Ground Coupling 852 18.42 Domain-to-Domain Signal Line ESD Networks 852 18.43 Domain-to-Domain Third-party Coupling Networks 853 18.44 Domain-to-Domain Cross-domain ESD Power Clamp 854 18.45 Digital-to-Analog Domain Moat 855 18.46 Analog and ESD Circuit Integration 855 18.47 Integrated Body Ties 856 18.48 Self-Protecting vs Non-self Protecting Designs 856 References 856 19 ESD in RF CMOS 865 19.1 CMOS and ESD 865 19.2 RF CMOS 865 19.3 RF CMOS and ESD 865 19.4 RF CMOS ESD Failure Mechanisms 865 19.5 RF CMOS - ESD Device Comparisons 866 19.6 RF ESD Metrics 867 19.7 Grounded Gate n-channel MOSFET versus STI Diode 868 19.8 Silicon-controlled Rectifier 869 19.9 SCR versus GGNMOS 869 19.10 Shallow Trench Isolation and Polysilicon Gated Diodes 869 19.11 RF ESD Design 870 19.12 RF ESD Design Layout - Circular RF ESD Devices 870 19.13 Disadvantage of RF ESD Circular Element 871 19.14 RF ESD Design - ESD Wiring Design 872 19.15 RF ESD Design - Loading Capacitance 872 19.16 Metal Capacitance 873 19.17 Analog Metal (AM) 873 19.18 RF ESD Design Practices 874 19.19 RF Passives - ESD and Schottky Barrier Diodes 874 19.20 Schottky Barrier Diodes and Metallurgy 875 19.21 Silicon Germanium Schottky Barrier Diodes 876 19.22 Schottky Barrier RF ESD Design Practice 877 19.23 RF Passives - ESD and Inductors 877 19.24 Quality Factor, Q 878 19.25 Incremental Model of an Inductor 878 19.26 Inductor Coil Parameters 878 19.27 RF Passives - ESD and Capacitors 882 19.28 Capacitors and RF Applications 882 19.29 Capacitors in ESD Networks 882 19.30 Types of Radio Frequency Capacitors 883 19.31 Metal-Oxide-Semiconductor and Metal-Insulator-Metal Capacitors 883 19.32 Varactors and Hyper-abrupt Junction Varactor Capacitors 884 19.33 Metal-ILD-Metal Capacitors 884 19.34 Vertical Parallel Plate (VPP) Capacitors 884 19.35 Tips: ESD RF Design Practices for Capacitors 885 19.36 Summary and Closing Comments 886 Problems 886 References 888 20 ESD in Silicon Germanium 891 20.1 Heterojunctions Bipolar Transistors 891 20.2 Silicon Germanium 891 20.3 Silicon Germanium HBT Devices 892 20.4 Silicon Germanium Device Structure 893 20.5 Silicon Germanium Film Deposition 894 20.6 Silicon Germanium Emitter-Base Region 895 20.7 Silicon Germanium Physics 895 20.8 Silicon Germanium Bandgap 896 20.9 Silicon Germanium Intrinsic Temperature 896 20.10 Position-dependent Silicon Germanium Profile 896 20.11 Position-dependent Intrinsic Temperature 897 20.12 SiGe Collector Current with Graded Germanium Concentration 897 20.13 Silicon Germanium ESD and Time Constants 898 20.14 Silicon Germanium Base Transit Time 898 20.15 Silicon Germanium Breakdown Voltages 898 20.16 Silicon Germanium ESD Measurements 899 20.17 Silicon Germanium Collector-to-Emitter ESD Stress 899 20.18 Transmission Line Pulse Testing of Silicon Germanium HBT 899 20.19 Transmission Line Pulse (TLP) I-V Characteristic 899 20.20 Wunsch-Bell Characteristic of Silicon Germanium HBT 901 20.21 Comparison of Silicon Germanium HBT and Silicon BJT 901 20.22 Wunsch-Bell Characteristic of SiGe HBT versus Si BJT 902 20.23 Intrinsic Base Resistance in SiGe HBT 904 20.24 SiGe HBT Electro-thermal HBM Simulation of Collector-Emitter Stress 904 20.25 Silicon Germanium Transistor Emitter-Base Design 905 20.26 Epitaxial-Base Hetero-Junction Bipolar Transistor (HBT) Emitter-Base Design 907 20.27 Self-aligned Silicon Germanium HBT Device 907 20.28 Non-Self Aligned Silicon Germanium HBT 908 20.29 Emitter-Base Design RF Frequency Performance Metrics 908 20.30 SiGe HBT Emitter-Base Resistance Model 909 20.31 SiGe HBT Emitter-Base Design and Silicide Placement 909 20.32 Silicide Material and ESD 910 20.33 Titanium Silicide and ESD 911 20.34 Cobalt Salicide 913 20.35 Self-aligned (SA) Emitter Base Design 914 20.36 Non-Self Aligned (NSA) Emitter Base Design 917 20.37 Non-Self Aligned HBT Human Body Model (HBM) Step Stress 918 20.38 Transmission Line Pulse (TLP) Step Stress 918 20.39 RF Testing of SiGe HBT Emitter-Base Configuration 921 20.40 Unity Current Gain Cutoff Frequency - Collector Current Plots 923 20.41 f MAX and f T 924 20.42 Electrothermal Simulation of Emitter-Base Stress 925 20.43 Field-Oxide (FOX) Isolation Defined Silicon Germanium Heterojunction Bipolar Transistor HBM Data 926 20.44 Silicon Germanium HBT Multiple-emitter Study 927 20.45 RF ESD Design Practice 927 20.46 Silicon Germanium ESD Failure Mechanisms 928 20.47 Summary and Closing Comments 928 References 928 21 ESD in Silicon Germanium Carbon 935 21.1 Heterojunctions and Silicon Germanium Carbon Technology 935 21.2 Silicon Germanium Carbon 935 21.3 Silicon Germanium Carbon Collector-Emitter ESD Measurements 937 21.4 Silicon Germanium Transistor Emitter-Base Design 940 21.5 Silicon Germanium Carbon - ESD-Induced S-Parameter Degradation 943 21.6 Silicon Germanium Carbon ESD Failure Mechanisms 945 21.7.
Summary and Closing Comments 945 References 946 22 ESD in GaAs 951 22.1 Gallium Arsenide Technology and ESD 951 22.2 Gallium Arsenide Energy-to-Failure, and Power-to-Failure 951 22.3 Gallium Arsenide ESD Failures in Active and Passive Elements 954 22.4 Gallium Arsenide HBT Devices and ESD 955 22.5 Gallium Arsenide HBT Device ESD Results 956 22.6 Gallium Arsenide HBT Diode Strings 957 22.7 Gallium Arsenide HBT-based Passive Elements 959 22.8 GaAs HBT Base-Collector Varactor 959 22.9 Gallium Arsenide Technology Table of Failure Mechanisms 960 22.10 Application - GaAs Power Amplifier in a Cell Phone 961 22.11 Summary and Closing Comments 965 Questions 965 References 966 23 ESD in Bulk and SOI FINFET 971 23.1 Early FinFET Structures 971 23.2 FinFET Structure and Design Parameters 971 23.3 FinFET Parameters 973 23.4 Summary and Closing Comments 977 References 977 24 MEMs 979 24.1 Micro-electromechanical (MEM) Devices 979 24.2 ESD Concerns in Micro-electromechanical (MEM) Devices 980 24.3 Actuators 982 24.5 Micro-electromechanical (MEM) Mirrors 985 24.6 Summary and Closing Comments 989 References 989 25 Magnetic Recording 991 25.1 Magnetic Recording Technology 991 25.2 Summary and Closing Comments 995 References 995 26 Photomasks 1003 26.1 Photomasks and Reticles 1003 26.2 ESD Concerns in Photomasks 1003 26.3 Avalanche Breakdown in Photomasks 1004 26.4 Electrical Model in Photomasks 1007 26.5 Failure Defects in Photomasks 1008 26.6 Summary and Closing Comments 1011 References 1011 Appendix Table of Acronyms 1013 A Glossary of Terms - EMC Terminology 1015 B Appendix B. ESD Standards 1017 B.1 ESD Association 1017 B.2 International Organization of Standards 1018 B.3 Department of Defense 1018 B.4 Military Standards 1019 B.5 Airborne Standards and Lightning 1019 C Index 1021 D Wiley Series in Electrostatic Discharge (ESD) and Electrical Overstress (EOS) 1055 D.1 Additional Wiley Texts 1055 E ESD Design Rules 1057 E.1 ESD Design Rule Check (DRC) 1057 E.2 Electrostatic Discharge (ESD) Layout Versus Schematic (LVS) Verification 1058 E.3 ESD Electrical Rule Check (ERC) 1059 F Guard Ring Design Rules 1061 F.1 Latchup Design Rule Checking (DRC) and Guard Rings 1061 F.2 Latchup Electrical Rule Check (ERC) 1063 F.3 Guard Ring Resistance 1064 G EOS Design Rules and Checklist 1067 G.1 Electrical Overstress (EOS) Design Rule Checking 1067 G.2 Electrical Overstress (EOS) Layout Versus Schematic (LVS) Verification 1067 G.3 Electrical Overstress (EOS) Electrical Rule Check (ERC) 1068 H Latchup Design Rules 1069 H.1 Latchup Design Rule Checking (DRC) 1069 H.2 Latchup Electrical Rule Check (ERC) 1072 I ESD Cookbook 1077 I.1 Electrostatic Discharge (ESD) Cookbook 1077 J EOS Cookbook 1079 J.1 Electrical Overstress (EOS) Cookbook 1079 K Latchup Cookbook 1081 K.1 Latchup Design Rule Checking (DRC) 1081 K.2 Latchup Electrical Rule Check (ERC) 1083 L ESD Design and Release Check List 1087 L.1 ESD Design Release 1087 L.2 Electrostatic Discharge (ESD) Checklists 1087 M EOS Design and Release Checklist 1089 M.1 Electrical Overstress (EOS) and ESD Design Release 1089 M.2 Electrical Overstress (EOS) Design Release Process 1089 M.3 Electrical Overstress (EOS) Checklists 1090 M.4 An EOS Checklist 1091 N Latchup Design and Release Checklist 1093 N.1 Latchup Design Rule Checking (DRC) 1093 N.2 Latchup Electrical Rule Checking (ERC) 1095 N.3 Latchup Checklists 1095 N.4 A Latchup Design and Release Checklist 1096 Index 1097.
Record Nr. UNINA-9910829865103321
Voldman Steven H.  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microwave and Millimeter-Wave Chips Based on Thin-Film Integrated Passive Device Technology [[electronic resource] ] : Design and Simulation / / by Yongle Wu, Weimin Wang
Microwave and Millimeter-Wave Chips Based on Thin-Film Integrated Passive Device Technology [[electronic resource] ] : Design and Simulation / / by Yongle Wu, Weimin Wang
Autore Wu Yongle
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (323 pages)
Disciplina 621.38133
Altri autori (Persone) WangWeimin
Soggetto topico Telecommunication
Electronics
Electronic circuits
Microwaves, RF Engineering and Optical Communications
Electronics and Microelectronics, Instrumentation
Electronic Circuits and Systems
Soggetto non controllato Electronics
Electronic Circuits
Microwaves
Technology & Engineering
ISBN 981-9914-55-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Design and Simulation of Balanced Bandpass Filter -- Design and Simulation of Millimeter-Wave Microstrip Bandpass Filter -- Design and Simulation of Input-Absorptive Bandstop Filter -- Design and Simulation of Impedance-Transforming Power Divider -- Design and Simulation of Bandpass Filtering Marchand Balun.
Record Nr. UNINA-9910728930403321
Wu Yongle  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Real-Time Simulation and Hardware-in-the-Loop Testing Using Typhoon HIL [[electronic resource] /] / edited by Saurabh Mani Tripathi, Francisco M. Gonzalez-Longatt
Real-Time Simulation and Hardware-in-the-Loop Testing Using Typhoon HIL [[electronic resource] /] / edited by Saurabh Mani Tripathi, Francisco M. Gonzalez-Longatt
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (463 pages)
Disciplina 929.374
Collana Transactions on Computer Systems and Networks
Soggetto topico Computers, Special purpose
Computer engineering
Computer networks
Electronic circuits
Electronic digital computers—Evaluation
Microprocessors
Computer architecture
Special Purpose and Application-Based Systems
Computer Engineering and Networks
Electronic Circuits and Systems
System Performance and Evaluation
Processor Architectures
Soggetto non controllato Computer Networks
Electronic Circuits
Computer Architecture
Expert Systems (Computer Science)
Computers
Technology & Engineering
ISBN 9789819902248
9789819902231
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Typhoon HIL -- Typhoon HIL Control Centre and Virtual HIL Device -- Control of Grid-tied Converter: Real-time Validation -- Real-time Control Validation for Multilevel Converter -- Design and Analysis of Cascaded H-Bridge Eleven-Level Inverter -- Grid-connected converter employing optimized modulation strategy coordinated with the virtual synchronous machine concept -- Development of MMC based HVDC and model for SSR analysis in Typhoon HIL -- Selective Harmonic Compensation in Active Power Filter -- RHigh Impedance Fault Modelling and Tests for Real Time Applications -- Cyber Security in Smart Grid -- Sensorless Control of Electric Motor Drives -- Validation of Relaying Techniques on HIL Platform -- Power System Protection Co-ordination and Relay-in-the-Loop -- Testing Distance Element of SEL411-L using Power Hardware-in-the-Loop -- Testing IEC61850 Sampled Values using Typhoon HIL 604.
Record Nr. UNISA-996547966203316
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Real-Time Simulation and Hardware-in-the-Loop Testing Using Typhoon HIL [[electronic resource] /] / edited by Saurabh Mani Tripathi, Francisco M. Gonzalez-Longatt
Real-Time Simulation and Hardware-in-the-Loop Testing Using Typhoon HIL [[electronic resource] /] / edited by Saurabh Mani Tripathi, Francisco M. Gonzalez-Longatt
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (463 pages)
Disciplina 929.374
Collana Transactions on Computer Systems and Networks
Soggetto topico Computers, Special purpose
Computer engineering
Computer networks
Electronic circuits
Electronic digital computers—Evaluation
Microprocessors
Computer architecture
Special Purpose and Application-Based Systems
Computer Engineering and Networks
Electronic Circuits and Systems
System Performance and Evaluation
Processor Architectures
Soggetto non controllato Computer Networks
Electronic Circuits
Computer Architecture
Expert Systems (Computer Science)
Computers
Technology & Engineering
ISBN 9789819902248
9789819902231
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Typhoon HIL -- Typhoon HIL Control Centre and Virtual HIL Device -- Control of Grid-tied Converter: Real-time Validation -- Real-time Control Validation for Multilevel Converter -- Design and Analysis of Cascaded H-Bridge Eleven-Level Inverter -- Grid-connected converter employing optimized modulation strategy coordinated with the virtual synchronous machine concept -- Development of MMC based HVDC and model for SSR analysis in Typhoon HIL -- Selective Harmonic Compensation in Active Power Filter -- RHigh Impedance Fault Modelling and Tests for Real Time Applications -- Cyber Security in Smart Grid -- Sensorless Control of Electric Motor Drives -- Validation of Relaying Techniques on HIL Platform -- Power System Protection Co-ordination and Relay-in-the-Loop -- Testing Distance Element of SEL411-L using Power Hardware-in-the-Loop -- Testing IEC61850 Sampled Values using Typhoon HIL 604.
Record Nr. UNINA-9910725096103321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
RF/microwave engineering and applications in energy systems / / Abdullah Eroglu
RF/microwave engineering and applications in energy systems / / Abdullah Eroglu
Autore Eroglu Abdullah
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2022
Descrizione fisica 1 online resource
Disciplina 621.3813
Soggetto topico Microwaves
Radio frequency
Power (Mechanics)
Soggetto non controllato Electronic Circuits
Electric Power
Microwaves
Technology & Engineering
ISBN 1-119-27018-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Matter -- Fundamentals of Electromagnetics -- Passive and Active Components -- Transmission Lines -- Network Parameters -- Impedance Matching -- Resonator Circuits -- Couplers, Combiners, and Dividers -- Filters -- Waveguides -- Power Amplifiers -- Antennas -- RF Wireless Communication Basics for Emerging Technologies -- Energy Harvesting and HVAC Systems with RF Signals -- Index.
Record Nr. UNINA-9910831089603321
Eroglu Abdullah  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui