top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Human Health Engineering Volume II
Human Health Engineering Volume II
Autore Aerts Jean Marie
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (196 p.)
Soggetto topico Technology: general issues
Soggetto non controllato vibratory stimulation device
local muscle vibration
proprioceptors
low back pain
response frequency
postural control
Vater-Pacini corpuscles
electroencephalography
deep learning
driving fatigue
feature extraction
convolutional neural network
rehabilitation
robotics
technological devices
upper limb impairment
organizational model
inkjet printing
respiratory rate
strain gauge
stretchable and wearable sensors
silver nanoparticles
clinical evaluation
body posture
upper limb rehabilitation
serious games
haptic feedback
electromyography sensors
virtual reality
smoothness
wearable sensors
gait analysis
stumbling
plantar visualization
remote fetal monitor
measurement uncertainty
standard deviation
Monte-Carlo method (MMC)
efficient estimator
automated assessment
UE-FMA
pinch force
pulling force
slip onset
stroke
anorexia nervosa
electrodermal activity
time-domain analysis
frequency-domain analysis
nonlinear analysis
virtual reality exposure therapy
driving phobia
post-traumatic stress disorder
physiological signal
piezo-fluid-structural coupled simulation
APS
valveless micropump
closed-loop insulin pump
Individual verification
Electrocardiogram (ECG)
Interval based LDA
biometrics
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557392603321
Aerts Jean Marie  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Signal Processing Using Non-invasive Physiological Sensors
Signal Processing Using Non-invasive Physiological Sensors
Autore Niazi Imran Khan
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (222 p.)
Soggetto topico Medical equipment & techniques
Soggetto non controllato movement intention
brain–computer interface
movement-related cortical potential
neurorehabilitation
phonocardiogram
machine learning
empirical mode decomposition
feature extraction
mel-frequency cepstral coefficients
support vector machines
computer aided diagnosis
congenital heart disease
statistical analysis
convolutional neural network (CNN)
long short-term memory (LSTM)
emotion recognition
EEG
ECG
GSR
deep neural network
physiological signals
electroencephalography
Brain-Computer Interface
multiscale principal component analysis
successive decomposition index
motor imagery
mental imagery
classification
hybrid brain-computer interface (BCI)
home automation
electroencephalogram (EEG)
steady-state visually evoked potential (SSVEP)
eye blink
short-time Fourier transform (STFT)
convolution neural network (CNN)
human machine interface (HMI)
rehabilitation
wheelchair
quadriplegia
Raspberry Pi
image gradient
AMR voice
Open-CV
image processing
acoustic
startle
reaction
response
reflex
blink
mobile
sound
stroke
EMG
brain-computer interface
myoelectric control
pattern recognition
functional near-infrared spectroscopy
z-score method
channel selection
region of interest
channel of interest
respiratory rate (RR)
Electrocardiogram (ECG)
ECG derived respiration (EDR)
auscultation sites
pulse plethysmograph
biomedical signal processing
feature selection and reduction
discrete wavelet transform
hypertension
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566473903321
Niazi Imran Khan  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wearable and Nearable Biosensors and Systems for Healthcare
Wearable and Nearable Biosensors and Systems for Healthcare
Autore Di Rienzo Marco
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (226 p.)
Soggetto topico Humanities
Social interaction
Soggetto non controllato tangent space
Riemannian geometry
particle swarm optimization (PSO)
BCI
EEG
electro-oscillography (EOG)
CSP
FBCSP (filter bank common spatial pattern)
online learning
ballistocardiography
pressure sensor
Emfit
home monitoring
sleep recording
sleep apnea
unsupervised learning
synchronization
acoustic emissions
joint sounds
glove
wearable sensing
knee joint loading
quaternion
smartphone
feature engineering
human activity recognition
sensor fusion
ballistocardiogram
blood pressure
stroke volume
cardiac output
total peripheral resistance
photoplethysmography
photoplethysmogram
heart rate
consumer-wearable devices
in-ear
validation
optical pulse rate monitoring
pulse rate
seismocardiography
ultra-short heart rate variability
stress evaluation
accelerometers
robotic assistant systems for surgery
expertise
pick-and-drop simulator task
grip force profiles
grip force control
body sensor network
wearable sensor
telemedicine
telerehabilitation
seismocardiogram
acceleration
electrocardiogram
cardiac mechanics
pulse transit time
adaptive recursive least squares filter (ARLSF)
Seismocardiography (SCG)
motion artifact
Electrocardiogram (ECG)
ageing
gender
machine learning
support vector machine
voice analysis
pressure sensors
compression therapy
thin-film sensors
wireless sensors
medical pressure monitoring
capacitive sensors
flexible sensors
LC sensor
wound monitoring
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557338203321
Di Rienzo Marco  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui