top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced control of power converters : techniques and Matlab/Simulink implementation / / Hasan Komurcugil [and four others]
Advanced control of power converters : techniques and Matlab/Simulink implementation / / Hasan Komurcugil [and four others]
Autore Komurcugil Hasan
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2023]
Descrizione fisica 1 online resource (467 pages)
Disciplina 621.3815322
Collana IEEE Press Series on Control Systems Theory and Applications Series
Soggetto topico Convertidors de corrent elèctric
Control no lineal, Teoria de
Electric current converters
Nonlinear control theory
Soggetto non controllato Electronics
Electric Power
System Theory
Technology & Engineering
Science
ISBN 9781119854432
1-119-85443-1
1-119-85441-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- List of Abbreviations -- Preface -- Acknowledgment -- About the Companion Website -- Chapter 1 Introduction -- 1.1 General Remarks -- 1.2 Basic Closed-Loop Control for Power Converters -- 1.3 Mathematical Modeling of Power Converters -- 1.4 Basic Control Objectives -- 1.4.1 Closed-Loop Stability -- 1.4.2 Settling Time -- 1.4.3 Steady-State Error -- 1.4.4 Robustness to Parameter Variations and Disturbances -- 1.5 Performance Evaluation -- 1.5.1 Simulation-Based Method -- 1.5.2 Experimental Method -- 1.6 Contents of the Book -- References -- Chapter 2 Introduction to Advanced Control Methods -- 2.1 Classical Control Methods for Power Converters -- 2.2 Sliding Mode Control -- 2.3 Lyapunov Function-Based Control -- 2.3.1 Lyapunov's Linearization Method -- 2.3.2 Lyapunov's Direct Method -- 2.4 Model Predictive Control -- 2.4.1 Functional Principle -- 2.4.2 Basic Concept -- 2.4.3 Cost Function -- References -- Chapter 3 Design of Sliding Mode Control for Power Converters -- 3.1 Introduction -- 3.2 Sliding Mode Control of DC-DC Buck and Cuk Converters -- 3.3 Sliding Mode Control Design Procedure -- 3.3.1 Selection of Sliding Surface Function -- 3.3.2 Control Input Design -- 3.4 Chattering Mitigation Techniques -- 3.4.1 Hysteresis Function Technique -- 3.4.2 Boundary Layer Technique -- 3.4.3 State Observer Technique -- 3.5 Modulation Techniques -- 3.5.1 Hysteresis Modulation Technique -- 3.5.2 Sinusoidal Pulse Width Modulation Technique -- 3.5.3 Space Vector Modulation Technique -- 3.6 Other Types of Sliding Mode Control -- 3.6.1 Terminal Sliding Mode Control -- 3.6.2 Second-Order Sliding Mode Control -- References -- Chapter 4 Design of Lyapunov Function-Based Control for Power Converters -- 4.1 Introduction -- 4.2 Lyapunov-Function-Based Control Design Using Direct Method.
4.3 Lyapunov Function-Based Control of DC-DC Buck Converter -- 4.4 Lyapunov Function-Based Control of DC-DC Boost Converter -- References -- Chapter 5 Design of Model Predictive Control -- 5.1 Introduction -- 5.2 Predictive Control Methods -- 5.3 FCS Model Predictive Control -- 5.3.1 Design Procedure -- 5.3.2 Tutorial 1: Implementation of FCS-MPC for Three-Phase VSI -- 5.4 CCS Model Predictive Control -- 5.4.1 Incremental Models -- 5.4.2 Predictive Model -- 5.4.3 Cost Function in CCSMPC -- 5.4.4 Cost Function Minimization -- 5.4.5 Receding Control Horizon Principle -- 5.4.6 Closed-Loop of an MPC System -- 5.4.7 Discrete Linear Quadratic Regulators -- 5.4.8 Formulation of the Constraints in MPC -- 5.4.9 Optimization with Equality Constraints -- 5.4.10 Optimization with Inequality Constraints -- 5.4.11 MPC for Multi-Input Multi-Output Systems -- 5.4.12 Tutorial 2: MPC Design For a Grid-Connected VSI in dq Frame -- 5.5 Design and Implementation Issues -- 5.5.1 Cost Function Selection -- 5.5.1.1 Examples for Primary Control Objectives -- 5.5.1.2 Examples for Secondary Control Objectives -- 5.5.2 Weighting Factor Design -- 5.5.2.1 Empirical Selection Method -- 5.5.2.2 Equal-Weighted Cost-Function-Based Selection Method -- 5.5.2.3 Lookup Table-Based Selection Method -- References -- Chapter 6 MATLAB/Simulink Tutorial on Physical Modeling and Experimental Setup -- 6.1 Introduction -- 6.2 Building Simulation Model for Power Converters -- 6.2.1 Building Simulation Model for Single-Phase Grid-Connected Inverter Based on Sliding Mode Control -- 6.2.2 Building Simulation Model for Three-Phase Rectifier Based on Lyapunov-Function-Based Control -- 6.2.3 Building Simulation Model for Quasi-Z Source Three-Phase Four-Leg Inverter Based on Model Predictive Control -- 6.2.4 Building Simulation Model for Distributed Generations in Islanded AC Microgrid.
6.3 Building Real-Time Model for a Single-Phase T-Type Rectifier -- 6.4 Building Rapid Control Prototyping for a Single-Phase T-Type Rectifier -- 6.4.1 Components in the Experimental Testbed -- 6.4.1.1 Grid Simulator -- 6.4.1.2 A Single-Phase T-Type Rectifier Prototype -- 6.4.1.3 Measurement Board -- 6.4.1.4 Programmable Load -- 6.4.1.5 Controller -- 6.4.2 Building Control Structure on OP-5707 -- References -- Chapter 7 Sliding Mode Control of Various Power Converters -- 7.1 Introduction -- 7.2 Single-Phase Grid-Connected Inverter with LCL Filter -- 7.2.1 Mathematical Modeling of Grid-Connected Inverter with LCL Filter -- 7.2.2 Sliding Mode Control -- 7.2.3 PWM Signal Generation Using Hysteresis Modulation -- 7.2.3.1 Single-Band Hysteresis Function -- 7.2.3.2 Double-Band Hysteresis Function -- 7.2.4 Switching Frequency Computation -- 7.2.4.1 Switching Frequency Computation with Single-Band Hysteresis Modulation -- 7.2.4.2 Switching Frequency Computation with Double-Band Hysteresis Modulation -- 7.2.5 Selection of Control Gains -- 7.2.6 Simulation Study -- 7.2.7 Experimental Study -- 7.3 Three-Phase Grid-Connected Inverter with LCL Filter -- 7.3.1 Physical Model Equations for a Three-Phase Grid-Connected VSI with an LCL Filter -- 7.3.2 Control System -- 7.3.2.1 Reduced State-Space Model of the Converter -- 7.3.2.2 Model Discretization and KF Adaptive Equation -- 7.3.2.3 Sliding Surfaces with Active Damping Capability -- 7.3.3 Stability Analysis -- 7.3.3.1 Discrete-Time Equivalent Control Deduction -- 7.3.3.2 Closed-Loop System Equations -- 7.3.3.3 Test of Robustness Against Parameters Uncertainties -- 7.3.4 Experimental Study -- 7.3.4.1 Test of Robustness Against Grid Inductance Variations -- 7.3.4.2 Test of Stability in Case of Grid Harmonics Near the Resonance Frequency -- 7.3.4.3 Test of the VSI Against Sudden Changes in the Reference Current.
7.3.4.4 Test of the VSI Under Distorted Grid -- 7.3.4.5 Test of the VSI Under Voltage Sags -- 7.3.5 Computational Load and Performances of the Control Algorithm -- 7.4 Three-Phase AC-DC Rectifier -- 7.4.1 Nonlinear Model of the Unity Power Factor Rectifier -- 7.4.2 Problem Formulation -- 7.4.3 Axis-Decoupling Based on an Estimator -- 7.4.4 Control System -- 7.4.4.1 Kalman Filter -- 7.4.4.2 Practical Considerations: Election of Q and R Matrices -- 7.4.4.3 Practical Considerations: Computational Burden Reduction -- 7.4.5 Sliding Mode Control -- 7.4.5.1 Inner Control Loop -- 7.4.5.2 Outer Control Loop -- 7.4.6 Hysteresis Band Generator with Switching Decision Algorithm -- 7.4.7 Experimental Study -- 7.5 Three-Phase Transformerless Dynamic Voltage Restorer -- 7.5.1 Mathematical Modeling of Transformerless Dynamic Voltage Restorer -- 7.5.2 Design of Sliding Mode Control for TDVR -- 7.5.3 Time-Varying Switching Frequency with Single-Band Hysteresis -- 7.5.4 Constant Switching Frequency with Boundary Layer -- 7.5.5 Simulation Study -- 7.5.6 Experimental Study -- 7.6 Three-Phase Shunt Active Power Filter -- 7.6.1 Nonlinear Model of the SAPF -- 7.6.2 Problem Formulation -- 7.6.3 Control System -- 7.6.3.1 State Model of the Converter -- 7.6.3.2 Kalman Filter -- 7.6.3.3 Sliding Mode Control -- 7.6.3.4 Hysteresis Band Generator with SDA -- 7.6.4 Experimental Study -- 7.6.4.1 Response of the SAPF to Load Variations -- 7.6.4.2 SAPF Performances Under a Distorted Grid -- 7.6.4.3 SAPF Performances Under Grid Voltage Sags -- 7.6.4.4 Spectrum of the Control Signal -- References -- Chapter 8 Design of Lyapunov Function-Based Control of Various Power Converters -- 8.1 Introduction -- 8.2 Single-Phase Grid-Connected Inverter with LCL Filter -- 8.2.1 Mathematical Modeling and Controller Design -- 8.2.2 Controller Modification with Capacitor Voltage Feedback.
8.2.3 Inverter-Side Current Reference Generation Using Proportional-Resonant Controller -- 8.2.4 Grid Current Transfer Function -- 8.2.5 Harmonic Attenuation and Harmonic Impedance -- 8.2.6 Results -- 8.3 Single-Phase Quasi-Z-Source Grid-Connected Inverter with LCL Filter -- 8.3.1 Quasi-Z-Source Network Modeling -- 8.3.2 Grid-Connected Inverter Modeling -- 8.3.3 Control of Quasi-Z-Source Network -- 8.3.4 Control of Grid-Connected Inverter -- 8.3.5 Reference Generation Using Cascaded PR Control -- 8.3.6 Results -- 8.4 Single-Phase Uninterruptible Power Supply Inverter -- 8.4.1 Mathematical Modeling of Uninterruptible Power Supply Inverter -- 8.4.2 Controller Design -- 8.4.3 Criteria for Selecting Control Parameters -- 8.4.4 Results -- 8.5 Three-Phase Voltage-Source AC-DC Rectifier -- 8.5.1 Mathematical Modeling of Rectifier -- 8.5.2 Controller Design -- 8.5.3 Results -- References -- Chapter 9 Model Predictive Control of Various Converters -- 9.1 CCS MPC Method for a Three-Phase Grid-Connected VSI -- 9.1.1 Model Predictive Control Design -- 9.1.1.1 VSI Incremental Model with an Embedded Integrator -- 9.1.1.2 Predictive Model of the Converter -- 9.1.1.3 Cost Function Minimization -- 9.1.1.4 Inclusion of Constraints -- 9.1.2 MATLAB®/Simulink® Implementation -- 9.1.3 Simulation Studies -- 9.2 Model Predictive Control Method for Single-Phase Three-Level Shunt Active Filter -- 9.2.1 Modeling of Shunt Active Filter (SAPF) -- 9.2.2 The Energy-Function-Based MPC -- 9.2.2.1 Design of Energy-Function-Based MPC -- 9.2.2.2 Discrete-Time Model -- 9.2.3 Experimental Studies -- 9.2.3.1 Steady-State and Dynamic Response Tests -- 9.2.3.2 Comparison with Classical MPC Method -- 9.3 Model Predictive Control of Quasi-Z Source Three-Phase Four-Leg Inverter -- 9.3.1 qZS Four-Leg Inverter Model -- 9.3.2 MPC Algorithm -- 9.3.2.1 Determination of References.
9.3.2.2 Discrete-Time Models of the System.
Record Nr. UNINA-9910735566603321
Komurcugil Hasan  
Hoboken, New Jersey : , : Wiley, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent data mining and analysis in power and energy systems : models and applications for smarter efficient power systems / / edited by Zita A. Vale [and three other]
Intelligent data mining and analysis in power and energy systems : models and applications for smarter efficient power systems / / edited by Zita A. Vale [and three other]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2023]
Descrizione fisica 1 online resource (499 pages)
Disciplina 006.312
Collana IEEE Press Series on Power and Energy Systems
Soggetto topico Data mining
Electric power systems
Soggetto non controllato Electric Power
Technology & Engineering
ISBN 1-119-83405-8
1-119-83403-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Editors -- Notes on Contributors -- Preface -- Part I. Data Mining and Analysis Fundamentals -- 1. Foundations -- Ansel Y. Rodríguez Gonzl̀ez, Angel Díaz Pacheco, Ramón Aranda, and Miguel Angel Carmona -- 2. Data mining and analysis in power and energy systems: an introduction to algorithms and applications -- Fernando Lezama -- 3. Deep Learning in Intelligent Power and Energy Systems -- Bruno Mota, Tiago Pinto, Zita Vale, and Carlos Ramos -- Part II. Clustering -- 4. Data Mining Techniques applied to Power Systems -- Sérgio Ramos, Joô Soares, Zahra Forouzandeh, and Zita Vale -- 5. Synchrophasor Data Analytics for Anomaly and Event Detection, Classification and Localization -- Sajan K. Sadanandan, A. Ahmed, S. Pandey, and Anurag K. Srivastava -- 6. Clustering Methods for the Profiling of Electricity Consumers Owning Energy Storage System -- Ct̀ia Silva, Pedro Faria, Zita Vale, and Juan Manuel Corchado -- Part III. Classification -- 7. A Novel Framework for NTL Detection in Electric Distribution Systems -- Chia-Chi Chu, Nelson Fabian Avila, Gerardo Figueroa, and Wen-Kai Lu -- 8. Electricity market participation profiles classification for decision support in market negotiation -- Tiago Pinto and Zita Vale -- 9. Socio-demographic, economic and behavioural analysis of electric vehicles -- Rúben Barreto, Tiago Pinto, and Zita Vale -- Part IV. Forecasting -- 10. A Multivariate Stochastic Spatio-Temporal Wind Power Scenario Forecasting Model -- Wenlei Bai, Duehee Lee, and Kwang Y. Lee -- 11. Spatio-Temporal Solar Irradiance and Temperature Data Predictive Estimation -- Chirath Pathiravasam and Ganesh K. Venayagamoorthy -- 12. Application of decomposition-based hybrid wind power forecasting in isolated power systems with high renewable energy penetration -- Evgenii Semshikov, Michael Negnevitsky, James Hamilton, and Xiaolin Wang -- Part V. Data analysis -- 13. Harmonic Dynamic Response Study of Overhead Transmission Lines -- Dharmbir Prasad, Rudra Pratap Singh, Md. Irfan Khan, and Sushri Mukherjee -- 14. Evaluation of Shortest Path to Optimize Distribution Network Cost and Power Losses in Hilly Areas: A Case Study -- Subho Upadhyay, Rajeev Kumar Chauhan, and Mahendra Pal Sharma -- 15. Intelligent Approaches to Support Demand Response in Microgrid Planning -- Rahmat Khezri, Amin Mahmoudi, and Hirohisa Aki -- 16. Socio-Economic Analysis of Renewable Energy Interventions: Developing Affordable Small-Scale Household Sustainable Technologies in Northern Uganda -- Jens Bo Holm-Nielsen, Achora Proscovia O Mamur, and Samson Masebinu -- Part VI. Other machine learning applications -- 17. A Parallel Bidirectional Long Short-Term Memory Model for Non-Intrusive Load Monitoring -- Victor Andrean and Kuo-Lung Lian -- 18. Reinforcement Learning for Intelligent Building Energy Management System Control -- Olivera Kotevska and Philipp Andelfinger -- 19. Federated Deep Learning Technique for Power and Energy Systems Data Analysis -- Hamed Moayyed, Arash Moradzadeh, Behnam Mohammadi-Ivatloo, and Reza Ghorbani -- 20. Data Mining and Machine Learning for Power System Monitoring, Understanding, and Impact Evaluation -- Xinda Ke, Huiying Ren, Qiuhua Huang, Pavel Etingov and Zhangshuan Hou -- Conclusions -- Zita Vale, Tiago Pinto, Michael Negnevitsky, and Ganesh Kumar Venayagamoorthy.
Record Nr. UNINA-9910830100903321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Interval methods for uncertain power system analysis / / Alfredo Vaccaro
Interval methods for uncertain power system analysis / / Alfredo Vaccaro
Autore Vaccaro Alfredo
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (147 pages)
Disciplina 621.3101/5118
Collana IEEE Press Series on Power and Energy Systems Series
Soggetto topico Electric power systems
Electric power systems - Mathematical models
Electric power systems - Reliability
System analysis
Soggetto non controllato Power Resources
Electric Power
Technology & Engineering
ISBN 1-119-85507-1
1-119-85505-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830944403321
Vaccaro Alfredo  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
RF/microwave engineering and applications in energy systems / / Abdullah Eroglu
RF/microwave engineering and applications in energy systems / / Abdullah Eroglu
Autore Eroglu Abdullah
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2022
Descrizione fisica 1 online resource
Disciplina 621.3813
Soggetto topico Microwaves
Radio frequency
Power (Mechanics)
Soggetto non controllato Electronic Circuits
Electric Power
Microwaves
Technology & Engineering
ISBN 1-119-27018-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Matter -- Fundamentals of Electromagnetics -- Passive and Active Components -- Transmission Lines -- Network Parameters -- Impedance Matching -- Resonator Circuits -- Couplers, Combiners, and Dividers -- Filters -- Waveguides -- Power Amplifiers -- Antennas -- RF Wireless Communication Basics for Emerging Technologies -- Energy Harvesting and HVAC Systems with RF Signals -- Index.
Record Nr. UNINA-9910831089603321
Eroglu Abdullah  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui