Advanced control of power converters : techniques and Matlab/Simulink implementation / / Hasan Komurcugil [and four others] |
Autore | Komurcugil Hasan |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2023] |
Descrizione fisica | 1 online resource (467 pages) |
Disciplina | 621.3815322 |
Collana | IEEE Press Series on Control Systems Theory and Applications Series |
Soggetto topico |
Convertidors de corrent elèctric
Control no lineal, Teoria de Electric current converters Nonlinear control theory |
Soggetto non controllato |
Electronics
Electric Power System Theory Technology & Engineering Science |
ISBN |
9781119854432
1-119-85443-1 1-119-85441-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- List of Abbreviations -- Preface -- Acknowledgment -- About the Companion Website -- Chapter 1 Introduction -- 1.1 General Remarks -- 1.2 Basic Closed-Loop Control for Power Converters -- 1.3 Mathematical Modeling of Power Converters -- 1.4 Basic Control Objectives -- 1.4.1 Closed-Loop Stability -- 1.4.2 Settling Time -- 1.4.3 Steady-State Error -- 1.4.4 Robustness to Parameter Variations and Disturbances -- 1.5 Performance Evaluation -- 1.5.1 Simulation-Based Method -- 1.5.2 Experimental Method -- 1.6 Contents of the Book -- References -- Chapter 2 Introduction to Advanced Control Methods -- 2.1 Classical Control Methods for Power Converters -- 2.2 Sliding Mode Control -- 2.3 Lyapunov Function-Based Control -- 2.3.1 Lyapunov's Linearization Method -- 2.3.2 Lyapunov's Direct Method -- 2.4 Model Predictive Control -- 2.4.1 Functional Principle -- 2.4.2 Basic Concept -- 2.4.3 Cost Function -- References -- Chapter 3 Design of Sliding Mode Control for Power Converters -- 3.1 Introduction -- 3.2 Sliding Mode Control of DC-DC Buck and Cuk Converters -- 3.3 Sliding Mode Control Design Procedure -- 3.3.1 Selection of Sliding Surface Function -- 3.3.2 Control Input Design -- 3.4 Chattering Mitigation Techniques -- 3.4.1 Hysteresis Function Technique -- 3.4.2 Boundary Layer Technique -- 3.4.3 State Observer Technique -- 3.5 Modulation Techniques -- 3.5.1 Hysteresis Modulation Technique -- 3.5.2 Sinusoidal Pulse Width Modulation Technique -- 3.5.3 Space Vector Modulation Technique -- 3.6 Other Types of Sliding Mode Control -- 3.6.1 Terminal Sliding Mode Control -- 3.6.2 Second-Order Sliding Mode Control -- References -- Chapter 4 Design of Lyapunov Function-Based Control for Power Converters -- 4.1 Introduction -- 4.2 Lyapunov-Function-Based Control Design Using Direct Method.
4.3 Lyapunov Function-Based Control of DC-DC Buck Converter -- 4.4 Lyapunov Function-Based Control of DC-DC Boost Converter -- References -- Chapter 5 Design of Model Predictive Control -- 5.1 Introduction -- 5.2 Predictive Control Methods -- 5.3 FCS Model Predictive Control -- 5.3.1 Design Procedure -- 5.3.2 Tutorial 1: Implementation of FCS-MPC for Three-Phase VSI -- 5.4 CCS Model Predictive Control -- 5.4.1 Incremental Models -- 5.4.2 Predictive Model -- 5.4.3 Cost Function in CCSMPC -- 5.4.4 Cost Function Minimization -- 5.4.5 Receding Control Horizon Principle -- 5.4.6 Closed-Loop of an MPC System -- 5.4.7 Discrete Linear Quadratic Regulators -- 5.4.8 Formulation of the Constraints in MPC -- 5.4.9 Optimization with Equality Constraints -- 5.4.10 Optimization with Inequality Constraints -- 5.4.11 MPC for Multi-Input Multi-Output Systems -- 5.4.12 Tutorial 2: MPC Design For a Grid-Connected VSI in dq Frame -- 5.5 Design and Implementation Issues -- 5.5.1 Cost Function Selection -- 5.5.1.1 Examples for Primary Control Objectives -- 5.5.1.2 Examples for Secondary Control Objectives -- 5.5.2 Weighting Factor Design -- 5.5.2.1 Empirical Selection Method -- 5.5.2.2 Equal-Weighted Cost-Function-Based Selection Method -- 5.5.2.3 Lookup Table-Based Selection Method -- References -- Chapter 6 MATLAB/Simulink Tutorial on Physical Modeling and Experimental Setup -- 6.1 Introduction -- 6.2 Building Simulation Model for Power Converters -- 6.2.1 Building Simulation Model for Single-Phase Grid-Connected Inverter Based on Sliding Mode Control -- 6.2.2 Building Simulation Model for Three-Phase Rectifier Based on Lyapunov-Function-Based Control -- 6.2.3 Building Simulation Model for Quasi-Z Source Three-Phase Four-Leg Inverter Based on Model Predictive Control -- 6.2.4 Building Simulation Model for Distributed Generations in Islanded AC Microgrid. 6.3 Building Real-Time Model for a Single-Phase T-Type Rectifier -- 6.4 Building Rapid Control Prototyping for a Single-Phase T-Type Rectifier -- 6.4.1 Components in the Experimental Testbed -- 6.4.1.1 Grid Simulator -- 6.4.1.2 A Single-Phase T-Type Rectifier Prototype -- 6.4.1.3 Measurement Board -- 6.4.1.4 Programmable Load -- 6.4.1.5 Controller -- 6.4.2 Building Control Structure on OP-5707 -- References -- Chapter 7 Sliding Mode Control of Various Power Converters -- 7.1 Introduction -- 7.2 Single-Phase Grid-Connected Inverter with LCL Filter -- 7.2.1 Mathematical Modeling of Grid-Connected Inverter with LCL Filter -- 7.2.2 Sliding Mode Control -- 7.2.3 PWM Signal Generation Using Hysteresis Modulation -- 7.2.3.1 Single-Band Hysteresis Function -- 7.2.3.2 Double-Band Hysteresis Function -- 7.2.4 Switching Frequency Computation -- 7.2.4.1 Switching Frequency Computation with Single-Band Hysteresis Modulation -- 7.2.4.2 Switching Frequency Computation with Double-Band Hysteresis Modulation -- 7.2.5 Selection of Control Gains -- 7.2.6 Simulation Study -- 7.2.7 Experimental Study -- 7.3 Three-Phase Grid-Connected Inverter with LCL Filter -- 7.3.1 Physical Model Equations for a Three-Phase Grid-Connected VSI with an LCL Filter -- 7.3.2 Control System -- 7.3.2.1 Reduced State-Space Model of the Converter -- 7.3.2.2 Model Discretization and KF Adaptive Equation -- 7.3.2.3 Sliding Surfaces with Active Damping Capability -- 7.3.3 Stability Analysis -- 7.3.3.1 Discrete-Time Equivalent Control Deduction -- 7.3.3.2 Closed-Loop System Equations -- 7.3.3.3 Test of Robustness Against Parameters Uncertainties -- 7.3.4 Experimental Study -- 7.3.4.1 Test of Robustness Against Grid Inductance Variations -- 7.3.4.2 Test of Stability in Case of Grid Harmonics Near the Resonance Frequency -- 7.3.4.3 Test of the VSI Against Sudden Changes in the Reference Current. 7.3.4.4 Test of the VSI Under Distorted Grid -- 7.3.4.5 Test of the VSI Under Voltage Sags -- 7.3.5 Computational Load and Performances of the Control Algorithm -- 7.4 Three-Phase AC-DC Rectifier -- 7.4.1 Nonlinear Model of the Unity Power Factor Rectifier -- 7.4.2 Problem Formulation -- 7.4.3 Axis-Decoupling Based on an Estimator -- 7.4.4 Control System -- 7.4.4.1 Kalman Filter -- 7.4.4.2 Practical Considerations: Election of Q and R Matrices -- 7.4.4.3 Practical Considerations: Computational Burden Reduction -- 7.4.5 Sliding Mode Control -- 7.4.5.1 Inner Control Loop -- 7.4.5.2 Outer Control Loop -- 7.4.6 Hysteresis Band Generator with Switching Decision Algorithm -- 7.4.7 Experimental Study -- 7.5 Three-Phase Transformerless Dynamic Voltage Restorer -- 7.5.1 Mathematical Modeling of Transformerless Dynamic Voltage Restorer -- 7.5.2 Design of Sliding Mode Control for TDVR -- 7.5.3 Time-Varying Switching Frequency with Single-Band Hysteresis -- 7.5.4 Constant Switching Frequency with Boundary Layer -- 7.5.5 Simulation Study -- 7.5.6 Experimental Study -- 7.6 Three-Phase Shunt Active Power Filter -- 7.6.1 Nonlinear Model of the SAPF -- 7.6.2 Problem Formulation -- 7.6.3 Control System -- 7.6.3.1 State Model of the Converter -- 7.6.3.2 Kalman Filter -- 7.6.3.3 Sliding Mode Control -- 7.6.3.4 Hysteresis Band Generator with SDA -- 7.6.4 Experimental Study -- 7.6.4.1 Response of the SAPF to Load Variations -- 7.6.4.2 SAPF Performances Under a Distorted Grid -- 7.6.4.3 SAPF Performances Under Grid Voltage Sags -- 7.6.4.4 Spectrum of the Control Signal -- References -- Chapter 8 Design of Lyapunov Function-Based Control of Various Power Converters -- 8.1 Introduction -- 8.2 Single-Phase Grid-Connected Inverter with LCL Filter -- 8.2.1 Mathematical Modeling and Controller Design -- 8.2.2 Controller Modification with Capacitor Voltage Feedback. 8.2.3 Inverter-Side Current Reference Generation Using Proportional-Resonant Controller -- 8.2.4 Grid Current Transfer Function -- 8.2.5 Harmonic Attenuation and Harmonic Impedance -- 8.2.6 Results -- 8.3 Single-Phase Quasi-Z-Source Grid-Connected Inverter with LCL Filter -- 8.3.1 Quasi-Z-Source Network Modeling -- 8.3.2 Grid-Connected Inverter Modeling -- 8.3.3 Control of Quasi-Z-Source Network -- 8.3.4 Control of Grid-Connected Inverter -- 8.3.5 Reference Generation Using Cascaded PR Control -- 8.3.6 Results -- 8.4 Single-Phase Uninterruptible Power Supply Inverter -- 8.4.1 Mathematical Modeling of Uninterruptible Power Supply Inverter -- 8.4.2 Controller Design -- 8.4.3 Criteria for Selecting Control Parameters -- 8.4.4 Results -- 8.5 Three-Phase Voltage-Source AC-DC Rectifier -- 8.5.1 Mathematical Modeling of Rectifier -- 8.5.2 Controller Design -- 8.5.3 Results -- References -- Chapter 9 Model Predictive Control of Various Converters -- 9.1 CCS MPC Method for a Three-Phase Grid-Connected VSI -- 9.1.1 Model Predictive Control Design -- 9.1.1.1 VSI Incremental Model with an Embedded Integrator -- 9.1.1.2 Predictive Model of the Converter -- 9.1.1.3 Cost Function Minimization -- 9.1.1.4 Inclusion of Constraints -- 9.1.2 MATLAB®/Simulink® Implementation -- 9.1.3 Simulation Studies -- 9.2 Model Predictive Control Method for Single-Phase Three-Level Shunt Active Filter -- 9.2.1 Modeling of Shunt Active Filter (SAPF) -- 9.2.2 The Energy-Function-Based MPC -- 9.2.2.1 Design of Energy-Function-Based MPC -- 9.2.2.2 Discrete-Time Model -- 9.2.3 Experimental Studies -- 9.2.3.1 Steady-State and Dynamic Response Tests -- 9.2.3.2 Comparison with Classical MPC Method -- 9.3 Model Predictive Control of Quasi-Z Source Three-Phase Four-Leg Inverter -- 9.3.1 qZS Four-Leg Inverter Model -- 9.3.2 MPC Algorithm -- 9.3.2.1 Determination of References. 9.3.2.2 Discrete-Time Models of the System. |
Record Nr. | UNINA-9910735566603321 |
Komurcugil Hasan | ||
Hoboken, New Jersey : , : Wiley, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Intelligent data mining and analysis in power and energy systems : models and applications for smarter efficient power systems / / edited by Zita A. Vale [and three other] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2023] |
Descrizione fisica | 1 online resource (499 pages) |
Disciplina | 006.312 |
Collana | IEEE Press Series on Power and Energy Systems |
Soggetto topico |
Data mining
Electric power systems |
Soggetto non controllato |
Electric Power
Technology & Engineering |
ISBN |
1-119-83405-8
1-119-83403-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | About the Editors -- Notes on Contributors -- Preface -- Part I. Data Mining and Analysis Fundamentals -- 1. Foundations -- Ansel Y. Rodríguez Gonzl̀ez, Angel Díaz Pacheco, Ramón Aranda, and Miguel Angel Carmona -- 2. Data mining and analysis in power and energy systems: an introduction to algorithms and applications -- Fernando Lezama -- 3. Deep Learning in Intelligent Power and Energy Systems -- Bruno Mota, Tiago Pinto, Zita Vale, and Carlos Ramos -- Part II. Clustering -- 4. Data Mining Techniques applied to Power Systems -- Sérgio Ramos, Joô Soares, Zahra Forouzandeh, and Zita Vale -- 5. Synchrophasor Data Analytics for Anomaly and Event Detection, Classification and Localization -- Sajan K. Sadanandan, A. Ahmed, S. Pandey, and Anurag K. Srivastava -- 6. Clustering Methods for the Profiling of Electricity Consumers Owning Energy Storage System -- Ct̀ia Silva, Pedro Faria, Zita Vale, and Juan Manuel Corchado -- Part III. Classification -- 7. A Novel Framework for NTL Detection in Electric Distribution Systems -- Chia-Chi Chu, Nelson Fabian Avila, Gerardo Figueroa, and Wen-Kai Lu -- 8. Electricity market participation profiles classification for decision support in market negotiation -- Tiago Pinto and Zita Vale -- 9. Socio-demographic, economic and behavioural analysis of electric vehicles -- Rúben Barreto, Tiago Pinto, and Zita Vale -- Part IV. Forecasting -- 10. A Multivariate Stochastic Spatio-Temporal Wind Power Scenario Forecasting Model -- Wenlei Bai, Duehee Lee, and Kwang Y. Lee -- 11. Spatio-Temporal Solar Irradiance and Temperature Data Predictive Estimation -- Chirath Pathiravasam and Ganesh K. Venayagamoorthy -- 12. Application of decomposition-based hybrid wind power forecasting in isolated power systems with high renewable energy penetration -- Evgenii Semshikov, Michael Negnevitsky, James Hamilton, and Xiaolin Wang -- Part V. Data analysis -- 13. Harmonic Dynamic Response Study of Overhead Transmission Lines -- Dharmbir Prasad, Rudra Pratap Singh, Md. Irfan Khan, and Sushri Mukherjee -- 14. Evaluation of Shortest Path to Optimize Distribution Network Cost and Power Losses in Hilly Areas: A Case Study -- Subho Upadhyay, Rajeev Kumar Chauhan, and Mahendra Pal Sharma -- 15. Intelligent Approaches to Support Demand Response in Microgrid Planning -- Rahmat Khezri, Amin Mahmoudi, and Hirohisa Aki -- 16. Socio-Economic Analysis of Renewable Energy Interventions: Developing Affordable Small-Scale Household Sustainable Technologies in Northern Uganda -- Jens Bo Holm-Nielsen, Achora Proscovia O Mamur, and Samson Masebinu -- Part VI. Other machine learning applications -- 17. A Parallel Bidirectional Long Short-Term Memory Model for Non-Intrusive Load Monitoring -- Victor Andrean and Kuo-Lung Lian -- 18. Reinforcement Learning for Intelligent Building Energy Management System Control -- Olivera Kotevska and Philipp Andelfinger -- 19. Federated Deep Learning Technique for Power and Energy Systems Data Analysis -- Hamed Moayyed, Arash Moradzadeh, Behnam Mohammadi-Ivatloo, and Reza Ghorbani -- 20. Data Mining and Machine Learning for Power System Monitoring, Understanding, and Impact Evaluation -- Xinda Ke, Huiying Ren, Qiuhua Huang, Pavel Etingov and Zhangshuan Hou -- Conclusions -- Zita Vale, Tiago Pinto, Michael Negnevitsky, and Ganesh Kumar Venayagamoorthy. |
Record Nr. | UNINA-9910830100903321 |
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Interval methods for uncertain power system analysis / / Alfredo Vaccaro |
Autore | Vaccaro Alfredo |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023] |
Descrizione fisica | 1 online resource (147 pages) |
Disciplina | 621.3101/5118 |
Collana | IEEE Press Series on Power and Energy Systems Series |
Soggetto topico |
Electric power systems
Electric power systems - Mathematical models Electric power systems - Reliability System analysis |
Soggetto non controllato |
Power Resources
Electric Power Technology & Engineering |
ISBN |
1-119-85507-1
1-119-85505-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910830944403321 |
Vaccaro Alfredo | ||
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
RF/microwave engineering and applications in energy systems / / Abdullah Eroglu |
Autore | Eroglu Abdullah |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2022 |
Descrizione fisica | 1 online resource |
Disciplina | 621.3813 |
Soggetto topico |
Microwaves
Radio frequency Power (Mechanics) |
Soggetto non controllato |
Electronic Circuits
Electric Power Microwaves Technology & Engineering |
ISBN | 1-119-27018-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front Matter -- Fundamentals of Electromagnetics -- Passive and Active Components -- Transmission Lines -- Network Parameters -- Impedance Matching -- Resonator Circuits -- Couplers, Combiners, and Dividers -- Filters -- Waveguides -- Power Amplifiers -- Antennas -- RF Wireless Communication Basics for Emerging Technologies -- Energy Harvesting and HVAC Systems with RF Signals -- Index. |
Record Nr. | UNINA-9910831089603321 |
Eroglu Abdullah | ||
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|