top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Sensors, Big Data and Machine Learning in Intelligent Animal Farming
Advances in Sensors, Big Data and Machine Learning in Intelligent Animal Farming
Autore Qiao Yongliang
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (228 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato pig weight
body size
estimation
deep learning
convolutional neural network
pig identification
mask scoring R-CNN
soft-NMS
group-housed pigs
audio
dairy cow
mastication
jaw movement
forage management
precision livestock management
equine behavior
wearable sensor
intermodality interaction
class-balanced focal loss
absorbing Markov chain
cow behavior analysis
prediction of calving time
cow identification
EfficientDet
YOLACT++
cascaded model
instance segmentation
generative adversarial network
machine learning
automated medical image processing
deep neural network
animal science
CT scans
computer vision
cow
extensive livestock
sensorized wearable device
monitoring
parturition prediction
radar sensors
radar signal processing
animal farming
computational ethology
signal classification
wavelet analysis
dairy welfare
hierarchical clustering
mutual information
precision livestock farming
time budgets
unsupervised machine learning
wearables design
animal-centered design
animal telemetry
modularity
smart collar
design contributions
additive manufacturing
low-frequency tracking
commercial aviary
laying hens
false registrations
tree-based classifier
animal behaviour
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576879803321
Qiao Yongliang  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electronics, Close-Range Sensors and Artificial Intelligence in Forestry
Electronics, Close-Range Sensors and Artificial Intelligence in Forestry
Autore Borz Stelian Alexandru
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (248 p.)
Soggetto topico Research & information: general
Biology, life sciences
Forestry & related industries
Soggetto non controllato forest fire detection
deep learning
ensemble learning
Yolov5
EfficientDet
EfficientNet
big data
automation
artificial intelligence
multi-modality
acceleration
classification
events
performance
motor-manual felling
willow
Romania
region detection of forest fire
grading of forest fire
weakly supervised loss
fine segmentation
region-refining segmentation
lightweight Faster R-CNN
ultrasound sensors
road scanner
terrestrial laser scanning
TLS
forest road maintenance
forest road monitoring
crowned road surface
digital twinning
climate smart
LiDAR
digitalization
forest loss
land-cover change
machine learning
spatial heterogeneity
random forest model
geographically weighted regression
aboveground biomass
estimation
remote sensing
Sentinel-2
Iran
multiple regression
artificial neural network
k-nearest neighbor
random forest
canopy
drone
leaf
leaves
foliar
samples
sampling
Aerial robotics
UAS
UAV
IoT
forest ecology
accessibility
wood
diameter
length
close-range sensing
Augmented Reality
comparison
accuracy
effectiveness
potential
forestry 4.0
wood technology
sawmilling
productivity
prediction
long-term
tree ring
forestry detection
resistance sensor
micro-drilling resistance method
signal processing
Signal-to-Noise Ratio (SNR)
ISBN 3-0365-6171-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910639985003321
Borz Stelian Alexandru  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui