top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Sensors, Big Data and Machine Learning in Intelligent Animal Farming
Advances in Sensors, Big Data and Machine Learning in Intelligent Animal Farming
Autore Qiao Yongliang
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (228 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato absorbing Markov chain
additive manufacturing
animal behaviour
animal farming
animal science
animal telemetry
animal-centered design
audio
automated medical image processing
body size
cascaded model
class-balanced focal loss
commercial aviary
computational ethology
computer vision
convolutional neural network
cow
cow behavior analysis
cow identification
CT scans
dairy cow
dairy welfare
deep learning
deep neural network
design contributions
EfficientDet
equine behavior
estimation
extensive livestock
false registrations
forage management
generative adversarial network
group-housed pigs
hierarchical clustering
instance segmentation
intermodality interaction
jaw movement
laying hens
low-frequency tracking
machine learning
mask scoring R-CNN
mastication
modularity
monitoring
mutual information
parturition prediction
pig identification
pig weight
precision livestock farming
precision livestock management
prediction of calving time
radar sensors
radar signal processing
sensorized wearable device
signal classification
smart collar
soft-NMS
time budgets
tree-based classifier
unsupervised machine learning
wavelet analysis
wearable sensor
wearables design
YOLACT++
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576879803321
Qiao Yongliang  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electronics, Close-Range Sensors and Artificial Intelligence in Forestry
Electronics, Close-Range Sensors and Artificial Intelligence in Forestry
Autore Borz Stelian Alexandru
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (248 p.)
Soggetto topico Research & information: general
Biology, life sciences
Forestry & related industries
Soggetto non controllato forest fire detection
deep learning
ensemble learning
Yolov5
EfficientDet
EfficientNet
big data
automation
artificial intelligence
multi-modality
acceleration
classification
events
performance
motor-manual felling
willow
Romania
region detection of forest fire
grading of forest fire
weakly supervised loss
fine segmentation
region-refining segmentation
lightweight Faster R-CNN
ultrasound sensors
road scanner
terrestrial laser scanning
TLS
forest road maintenance
forest road monitoring
crowned road surface
digital twinning
climate smart
LiDAR
digitalization
forest loss
land-cover change
machine learning
spatial heterogeneity
random forest model
geographically weighted regression
aboveground biomass
estimation
remote sensing
Sentinel-2
Iran
multiple regression
artificial neural network
k-nearest neighbor
random forest
canopy
drone
leaf
leaves
foliar
samples
sampling
Aerial robotics
UAS
UAV
IoT
forest ecology
accessibility
wood
diameter
length
close-range sensing
Augmented Reality
comparison
accuracy
effectiveness
potential
forestry 4.0
wood technology
sawmilling
productivity
prediction
long-term
tree ring
forestry detection
resistance sensor
micro-drilling resistance method
signal processing
Signal-to-Noise Ratio (SNR)
ISBN 3-0365-6171-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910639985003321
Borz Stelian Alexandru  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui