Vai al contenuto principale della pagina

Intelligent Biosignal Analysis Methods



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Jović Alan Visualizza persona
Titolo: Intelligent Biosignal Analysis Methods Visualizza cluster
Pubblicazione: Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica: 1 online resource (256 p.)
Soggetto topico: Information technology industries
Soggetto non controllato: accelerometer
accuracy
Alzheimer's disease
autonomic nervous system
brain functional connectivity
classifiers
CNN
convolution neural network (CNN)
covariate shift
cross-participant
DEAP
deep learning
disgust
drowsiness classification
drowsiness detection
EEG
EEG features
electrocardiogram
electrocardiography
electroencephalogram (EEG)
electroencephalography (EEG)
emotion
emotion recognition
emotional state
event-centered data segmentation
eye blinks rate
fall detection
fatigue detection
feature extraction
feature selection
frequency band fusion
galvanic skin response
heart rate
individual differences
inter-participant
inter-subject variability
k-fold validation
machine learning
mental workload
Mish
myocardial infarction
n/a
neural network-based refinement
non-local attention mechanism
non-stationarity
olfactory training
optimal shrinkage
phase-locked value (PLV)
photoplethysmography (PPG)
psychophysics
residual attention
residual network
sensitivity
signal quality index
skin conductance level
sleep stage scoring
sleep staging
smell
spatial transformer networks
stress
surgery image
T-end annotation
tSQI
wearable device
wearable sensors
window duration
wine sensory analysis
Persona (resp. second.): JovićAlan
Sommario/riassunto: This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others.
Titolo autorizzato: Intelligent Biosignal Analysis Methods  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910557354803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui