top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Future Powertrain Technologies
Future Powertrain Technologies
Autore Rinderknecht Stephan
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (266 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato aftermarket hybridization kit
Arrhenius model
artefact
automatic re-training
benchmarking
catalytic stripper
dedicated hybrid transmission
degree of hybridization
drive train optimization
dynamic programming
E-Mobility
efficiency
electric machine design
electric vehicle
electric vehicle transition
electric vehicles
electrified mechanical transmission
electromechanical coupling
emissions mitigation
energy management
ensemble learning
evaporation tube
fault diagnosis
fault observation
fleet transition
GA
gearbox
global warming potential
greenhouse gas
high-speed
hybrid electric vehicle
hybrid electric vehicles
hybrid propulsion
input feedforward
inverter
life-cycle assessment
lithium-ion battery
local driving cycle
losses
machine learning
mission profile
multi-purpose vehicle
n/a
non-volatiles
optimization
particle measurement programme (PMP)
plug-in hybrid electric vehicle
plug-in hybrid electric vehicles
portable emissions measurement systems (PEMS)
powertrain
powertrain concepts
powertrain control
powertrain design
pressure sensor
proton exchange membrane fuel cell
Rainflow algorithm
range extenders
reliability
simulink, supercapacitor
solid particle number
structural reliability
thermal network
topology optimization
transmission
transmission design
uncertainties
vehicle efficiency
vehicle emissions
vehicle powertrain concepts
VFS
volatile removal efficiency
zinc-air battery
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557443503321
Rinderknecht Stephan  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic Range Estimation Algorithms for Electric Vehicles using Data-Driven Learning Models
Stochastic Range Estimation Algorithms for Electric Vehicles using Data-Driven Learning Models
Autore Scheubner Stefan
Pubbl/distr/stampa Karlsruhe, : KIT Scientific Publishing, 2022
Descrizione fisica 1 online resource (192 p.)
Collana Karlsruher Schriftenreihe Fahrzeugsystemtechnik
Soggetto topico Mechanical engineering & materials
Soggetto non controllato Algorithmen
Algorithms
E-Mobility
Elektromobilität
Energiemanagement
Energy Management
Fahrzeugtechnik
Forecasting
Vehicle Technology
Vorhersagen
ISBN 1000143200
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576868503321
Scheubner Stefan  
Karlsruhe, : KIT Scientific Publishing, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...