Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127 / / Gerd Faltings |
Autore | Faltings Gerd |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (113 pages) |
Disciplina | 516.3/5 |
Altri autori (Persone) | ZhangShouwu |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Geometry, Algebraic
Riemann-Roch theorems |
Soggetto non controllato |
Addition
Adjoint Alexander Grothendieck Algebraic geometry Analytic torsion Arakelov theory Asymptote Asymptotic expansion Asymptotic formula Big O notation Cartesian coordinate system Characteristic class Chern class Chow group Closed immersion Codimension Coherent sheaf Cohomology Combination Commutator Computation Covariant derivative Curvature Derivative Determinant Diagonal Differentiable manifold Differential form Dimension (vector space) Divisor Domain of a function Dual basis E6 (mathematics) Eigenvalues and eigenvectors Embedding Endomorphism Exact sequence Exponential function Generic point Heat kernel Injective function Intersection theory K-group Levi-Civita connection Line bundle Linear algebra Local coordinates Mathematical induction Morphism Natural number Neighbourhood (mathematics) Parameter Projective space Pullback (category theory) Pullback (differential geometry) Pullback Riemannian manifold Riemann–Roch theorem Self-adjoint operator Smoothness Sobolev space Stochastic calculus Summation Supertrace Theorem Transition function Upper half-plane Vector bundle Volume form |
ISBN | 1-4008-8247-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- LIST OF SYMBOLS -- LECTURE 1. CLASSICAL RIEMANN-ROCH THEOREM -- LECTURE 2. CHERN CLASSES OF ARITHMETIC VECTOR BUNDLES -- LECTURE 3. LAPLACIANS AND HEAT KERNELS -- LECTURE 4. THE LOCAL INDEX THEOREM FOR DIRAC OPERATORS -- LECTURE 5. NUMBER OPERATORS AND DIRECT IMAGES -- LECTURE 6. ARITHMETIC RIEMANN-ROCH THEOREM -- LECTURE 7. THE THEOREM OF BISMUT-VASSEROT -- REFERENCES |
Record Nr. | UNINA-9910154744103321 |
Faltings Gerd | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Lie Equations, Vol. I : General Theory. (AM-73) / / Donald Clayton Spencer, Antonio Kumpera |
Autore | Kumpera Antonio |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (312 pages) |
Disciplina | 512/.55 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Lie groups
Lie algebras Differential equations |
Soggetto non controllato |
Adjoint representation
Adjoint Affine transformation Alexander Grothendieck Analytic function Associative algebra Atlas (topology) Automorphism Bernhard Riemann Big O notation Bundle map Category of topological spaces Cauchy–Riemann equations Coefficient Commutative diagram Commutator Complex conjugate Complex group Complex manifold Computation Conformal map Continuous function Coordinate system Corollary Cotangent bundle Curvature tensor Deformation theory Derivative Diagonal Diffeomorphism Differentiable function Differential form Differential operator Differential structure Direct proof Direct sum Ellipse Endomorphism Equation Exact sequence Exactness Existential quantification Exponential function Exponential map (Riemannian geometry) Exterior derivative Fiber bundle Fibration Frame bundle Frobenius theorem (differential topology) Frobenius theorem (real division algebras) Group isomorphism Groupoid Holomorphic function Homeomorphism Integer J-invariant Jacobian matrix and determinant Jet bundle Linear combination Linear map Manifold Maximal ideal Model category Morphism Nonlinear system Open set Parameter Partial derivative Partial differential equation Pointwise Presheaf (category theory) Pseudo-differential operator Pseudogroup Quantity Regular map (graph theory) Requirement Riemann surface Right inverse Scalar multiplication Sheaf (mathematics) Special case Structure tensor Subalgebra Subcategory Subgroup Submanifold Subset Tangent bundle Tangent space Tangent vector Tensor field Tensor product Theorem Torsion tensor Transpose Variable (mathematics) Vector bundle Vector field Vector space Volume element |
ISBN | 1-4008-8173-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Foreword -- Glossary of Symbols -- Table of Contents -- Introduction -- A. Integrability of Lie Structures -- B. Deformation Theory of Lie Structures -- Chapter I. Jet Sheaves and Differential Equations -- Chapter II. Linear Lie Equations -- Chapter III. Derivations and Brackets -- Chapter IV. Non-Linear Complexes -- Chapter V. Derivations of Jet Forms -- Appendix. Lie Groupoids -- References -- Index |
Record Nr. | UNINA-9910154751903321 |
Kumpera Antonio | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|