top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Green's function estimates for lattice Schrödinger operators and applications / / J. Bourgain
Green's function estimates for lattice Schrödinger operators and applications / / J. Bourgain
Autore Bourgain Jean <1954->
Pubbl/distr/stampa Princeton, New Jersey : , : Princeton University Press, , 2005
Descrizione fisica 1 online resource (184 p.)
Disciplina 515.3/9
Collana Annals of Mathematics Studies
Soggetto topico Schrödinger operator
Green's functions
Hamiltonian systems
Evolution equations
Soggetto non controllato Almost Mathieu operator
Analytic function
Anderson localization
Betti number
Cartan's theorem
Chaos theory
Density of states
Dimension (vector space)
Diophantine equation
Dynamical system
Equation
Existential quantification
Fundamental matrix (linear differential equation)
Green's function
Hamiltonian system
Hermitian adjoint
Infimum and supremum
Iterative method
Jacobi operator
Linear equation
Linear map
Linearization
Monodromy matrix
Non-perturbative
Nonlinear system
Normal mode
Parameter space
Parameter
Parametrization
Partial differential equation
Periodic boundary conditions
Phase space
Phase transition
Polynomial
Renormalization
Self-adjoint
Semialgebraic set
Special case
Statistical significance
Subharmonic function
Summation
Theorem
Theory
Transfer matrix
Transversality (mathematics)
Trigonometric functions
Trigonometric polynomial
Uniformization theorem
ISBN 1-4008-3714-6
0-691-12098-6
Classificazione 33.06
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Acknowledgment -- Chapter 1. Introduction -- Chapter 2. Transfer Matrix and Lyapounov Exponent -- Chapter 3. Herman's Subharmonicity Method -- Chapter 4. Estimates on Subharmonic Functions -- Chapter 5. LDT for Shift Model -- Chapter 6. Avalanche Principle in SL2(R) -- Chapter 7. Consequences for Lyapounov Exponent, IDS, and Green's Function -- Chapter 8. Refinements -- Chapter 9. Some Facts about Semialgebraic Sets -- Chapter 10. Localization -- Chapter 11. Generalization to Certain Long-Range Models -- Chapter 12. Lyapounov Exponent and Spectrum -- Chapter 13. Point Spectrum in Multifrequency Models at Small Disorder -- Chapter 14. A Matrix-Valued Cartan-Type Theorem -- Chapter 15. Application to Jacobi Matrices Associated with Skew Shifts -- Chapter 16. Application to the Kicked Rotor Problem -- Chapter 17. Quasi-Periodic Localization on the Zd-lattice (d > 1) -- Chapter 18. An Approach to Melnikov's Theorem on Persistency of Nonresonant Lower Dimension Tori -- Chapter 19. Application to the Construction of Quasi-Periodic Solutions of Nonlinear Schrödinger Equations -- Chapter 20. Construction of Quasi-Periodic Solutions of Nonlinear Wave Equations -- Appendix
Record Nr. UNINA-9910790364803321
Bourgain Jean <1954->  
Princeton, New Jersey : , : Princeton University Press, , 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Green's function estimates for lattice Schrödinger operators and applications / / J. Bourgain
Green's function estimates for lattice Schrödinger operators and applications / / J. Bourgain
Autore Bourgain Jean <1954->
Pubbl/distr/stampa Princeton, New Jersey : , : Princeton University Press, , 2005
Descrizione fisica 1 online resource (184 p.)
Disciplina 515.3/9
Collana Annals of Mathematics Studies
Soggetto topico Schrödinger operator
Green's functions
Hamiltonian systems
Evolution equations
Soggetto non controllato Almost Mathieu operator
Analytic function
Anderson localization
Betti number
Cartan's theorem
Chaos theory
Density of states
Dimension (vector space)
Diophantine equation
Dynamical system
Equation
Existential quantification
Fundamental matrix (linear differential equation)
Green's function
Hamiltonian system
Hermitian adjoint
Infimum and supremum
Iterative method
Jacobi operator
Linear equation
Linear map
Linearization
Monodromy matrix
Non-perturbative
Nonlinear system
Normal mode
Parameter space
Parameter
Parametrization
Partial differential equation
Periodic boundary conditions
Phase space
Phase transition
Polynomial
Renormalization
Self-adjoint
Semialgebraic set
Special case
Statistical significance
Subharmonic function
Summation
Theorem
Theory
Transfer matrix
Transversality (mathematics)
Trigonometric functions
Trigonometric polynomial
Uniformization theorem
ISBN 1-4008-3714-6
0-691-12098-6
Classificazione 33.06
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Acknowledgment -- Chapter 1. Introduction -- Chapter 2. Transfer Matrix and Lyapounov Exponent -- Chapter 3. Herman's Subharmonicity Method -- Chapter 4. Estimates on Subharmonic Functions -- Chapter 5. LDT for Shift Model -- Chapter 6. Avalanche Principle in SL2(R) -- Chapter 7. Consequences for Lyapounov Exponent, IDS, and Green's Function -- Chapter 8. Refinements -- Chapter 9. Some Facts about Semialgebraic Sets -- Chapter 10. Localization -- Chapter 11. Generalization to Certain Long-Range Models -- Chapter 12. Lyapounov Exponent and Spectrum -- Chapter 13. Point Spectrum in Multifrequency Models at Small Disorder -- Chapter 14. A Matrix-Valued Cartan-Type Theorem -- Chapter 15. Application to Jacobi Matrices Associated with Skew Shifts -- Chapter 16. Application to the Kicked Rotor Problem -- Chapter 17. Quasi-Periodic Localization on the Zd-lattice (d > 1) -- Chapter 18. An Approach to Melnikov's Theorem on Persistency of Nonresonant Lower Dimension Tori -- Chapter 19. Application to the Construction of Quasi-Periodic Solutions of Nonlinear Schrödinger Equations -- Chapter 20. Construction of Quasi-Periodic Solutions of Nonlinear Wave Equations -- Appendix
Record Nr. UNINA-9910826528403321
Bourgain Jean <1954->  
Princeton, New Jersey : , : Princeton University Press, , 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui