top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Collaborative technologies and data science in artificial intelligence applications / / Aram Hajian, Nelson Baloian, Tomoo Inoue [and one other] (eds.)
Collaborative technologies and data science in artificial intelligence applications / / Aram Hajian, Nelson Baloian, Tomoo Inoue [and one other] (eds.)
Autore Hajian Aram
Pubbl/distr/stampa Berlin/Germany, : Logos Verlag Berlin, 2020
Descrizione fisica 1 online resource (190 pages) : illustrations; digital file(s)
Disciplina 006.3
Soggetto topico Artificial intelligence
Information theory
Soggetto non controllato Data science
Collaborative technologies
Artificial neural networks
Deep learning
Smart human centered computing
ISBN 9783832551414
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910418343503321
Hajian Aram  
Berlin/Germany, : Logos Verlag Berlin, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data Science, Human-Centered Computing, and Intelligent Technologies / Aram Hajian, Nelson Baloian, Tomoo Inoue, Wolfram Luther
Data Science, Human-Centered Computing, and Intelligent Technologies / Aram Hajian, Nelson Baloian, Tomoo Inoue, Wolfram Luther
Pubbl/distr/stampa Berlin, : Logos Verlag Berlin, 2022
Descrizione fisica 1 electronic resource (130 p.)
Soggetto topico Information technology: general issues
Soggetto non controllato Data science
Intelligent technologies
Artificial neural networks
Deep learning
Smart human-centered computing
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910595092103321
Berlin, : Logos Verlag Berlin, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Engaging Students : Using Evidence to Promote Student Success
Engaging Students : Using Evidence to Promote Student Success
Pubbl/distr/stampa Bloemfontein, : UJ Press, 2017
Descrizione fisica 1 electronic resource (262 p.)
Soggetto topico Higher & further education, tertiary education
Soggetto non controllato Academics
Academic achievement
Academic advising
Academic advisors
Academic challenge
Academic development
Academic literacy
Academic performance
Academic support
Access
Academic staff (also see academics/Lecturers)
Actionable
Active learning
Agency
Aggregated
Analyse
Apply
Ask questions
Assessment
Attitude
Australasian Survey of Student Engagement (AUSSE)
Beginning University Survey of Student Engagement (BUSSE)
Benchmarking
Bloom’s taxonomy
Business
economics and management
Campus environment
Capacity
Career advisors
Challenges
Classroom activities
Classroom Survey of Student Engagement (CLASSE)
Co-curricular (also see extra-curricular)
Cognitive
Cognitive development
Cognitive educational activities
Cognitive functions
Cognitive skills
Collaborative learning
Colleges
Community college
Comprehensive universities
Conditional formatting
Contextual
Contextual challenges
Contextualised
Council on Higher Education (CHE)
Course (module/subject)
Critical thinking
Culture
Curriculum
Data
Data-informed
Decision-making
Decolonisation
Deep learning
Department chairs (heads of departments)
Department of Higher Education and Training (DHET)
Development
Developmental outcomes
Diagnostic
Disaggregating
Discussions
Discussion with diverse others
Dropout
Education outcomes
Effective educational behaviours
Effective educational practices
Effective leadership
Effective teaching practices
Empirical
Engagement – also see Student Engagement
Engineering
Equity
Equitable outcomes
Evaluate
Evidence
Evidence-based
Expectations
Expected academic difficulty
Expected academic perseverance
Experiential learning
Experience with staff
Extended degree
Extended curricula
Extra-curricular (also see co-curricular)
Financial Stress Scale
First-generation
First-year
Food
Food insecurity
Frequency
Freshman myth
Gender
Graduate attributes (Learning outcomes)
Group work
Heads of departments
High-Impact practices
Higher education outcomes
Higher-Order Learning
Holistic
Humanities
Incentive
Indicators
Innovation
Innovative
Instructional paradigm
Interactions
Interventions
Institutional culture
Institutional performance
Institutional research
Institutional researchers
Institution-wide approaches
Interpersonal relationships
Interpersonal skills
Intersectional
Intersectionality
Irish Survey of Student Engagement (ISSE)
Knowledge
Knowledge society
Language
Law
Leaders
Leadership (management/university leadership)
Learning
Learning environments
Learning facilitator
Learning outcomes
Learning paradigm
Learning strategies
Learning with peers
Lecturer Survey of Student Engagement (LSSE)
Lecturers (also see academics/academic staff)
Librarians
Management (University leaders and Leadership)
Mathematics
Memorisation
Mentor
Mentoring
Mentorship
Mission
Module (course/subject)
Motivation
National Benchmark Tests (NBT)
National Benchmark Test Project (NBTP)
National Development Plan
National Survey of Student Engagement (NSSE)
Natural and Agricultural Sciences
Next Generation of Academics Programme (nGAP)
Numeracy development
Off-campus
On-campus
Online resources
Pathways
Peer learning (also see Tutor)
Pedagogical approaches
Pedagogical contexts
Pedagogical environments
Pedagogical experiences
Pedagogical innovation
Pedagogical practices
Pedagogical relationship
Pedagogical responsiveness
Pedagogies
Perceived academic preparation
Perceived preparedness
Persistence
Policies
Policy
Policy makers
Practical significance
Practical work
Preparing for class
Professional development
Professionals
Professional staff
Quadrant
Quality
Quality assurance
Quality of interactions
Quantitative reasoning
Reflection
Reflective and integrative learning
Relationships
Research
Responsiveness
Resources
Retention
Science
engineering and technology
Self-reflection
Senior students
Service learning
Social sciences
Socio-economic
South African Survey(s) of Student Engagement (SASSE)
Staff development (also academic development and lecturer development)
Stakeholder
Strategies
Statistical
Student affairs
Student behaviour
Student bodies
Student data
Student development
Student engagement
Student evaluation
Student financial aid
Student involvement
Student learning
Student life
Student needs
Student outcomes
Student organisations
Student perspective
Student participation
Student performance
Student persistence
Student retention
Student responses
Student societies
Student-staff interaction
Student success
Student views
Student voice
Success rates
Subject (course/module)
Support services
Support staff
Supportive campus
Supportive environment
Synthesise
Systemic perspective
Systemic understanding
Teaching
Teaching and learning
Techniques
Time
Time management
Traditional universities
Transformation
Transformative
Transition
Tutor
Tutorials
Undergraduate research
Underprepared
United States
University Capacity Development Grant (University Capacity Development Programme)
Universities
Universities of Technology
University leaders
Unrealistic
Well-being
ISBN 9781928424093
1928424090
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910639978103321
Bloemfontein, : UJ Press, 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning Techniques on Gene Function Prediction
Machine Learning Techniques on Gene Function Prediction
Autore Zou Quan
Pubbl/distr/stampa Frontiers Media SA, 2019
Descrizione fisica 1 online resource (485 p.)
Soggetto topico Medical genetics
Science: general issues
Soggetto non controllato Bioinformatics
Deep learning
Feature selection
Genetics
Machine learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557762403321
Zou Quan  
Frontiers Media SA, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multivariate Statistical Machine Learning Methods for Genomic Prediction
Multivariate Statistical Machine Learning Methods for Genomic Prediction
Autore Montesinos López Osval Antonio
Edizione [1st ed.]
Pubbl/distr/stampa Cham, : Springer Nature, 2022
Descrizione fisica 1 online resource (707 pages)
Altri autori (Persone) Montesinos LópezAbelardo
CrossaJosé
Soggetto topico Agricultural science
Life sciences: general issues
Botany & plant sciences
Animal reproduction
Probability & statistics
Aprenentatge automàtic
Genètica vegetal
Estadística matemàtica
Anàlisi multivariable
Processament de dades
Soggetto genere / forma Llibres electrònics
Soggetto non controllato open access
Statistical learning
Bayesian regression
Deep learning
Non linear regression
Plant breeding
Crop management
multi-trait multi-environments models
ISBN 3-030-89010-4
Classificazione MED090000SCI011000SCI070000SCI086000TEC003000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- Chapter 1: General Elements of Genomic Selection and Statistical Learning -- 1.1 Data as a Powerful Weapon -- 1.2 Genomic Selection -- 1.2.1 Concepts of Genomic Selection -- 1.2.2 Why Is Statistical Machine Learning a Key Element of Genomic Selection? -- 1.3 Modeling Basics -- 1.3.1 What Is a Statistical Machine Learning Model? -- 1.3.2 The Two Cultures of Model Building: Prediction Versus Inference -- 1.3.3 Types of Statistical Machine Learning Models and Model Effects -- 1.3.3.1 Types of Statistical Machine Learning Models -- 1.3.3.2 Model Effects -- 1.4 Matrix Algebra Review -- 1.5 Statistical Data Types -- 1.5.1 Data Types -- 1.5.2 Multivariate Data Types -- 1.6 Types of Learning -- 1.6.1 Definition and Examples of Supervised Learning -- 1.6.2 Definitions and Examples of Unsupervised Learning -- 1.6.3 Definition and Examples of Semi-Supervised Learning -- References -- Chapter 2: Preprocessing Tools for Data Preparation -- 2.1 Fixed or Random Effects -- 2.2 BLUEs and BLUPs -- 2.3 Marker Depuration -- 2.4 Methods to Compute the Genomic Relationship Matrix -- 2.5 Genomic Breeding Values and Their Estimation -- 2.6 Normalization Methods -- 2.7 General Suggestions for Removing or Adding Inputs -- 2.8 Principal Component Analysis as a Compression Method -- Appendix 1 -- Appendix 2 -- References -- Chapter 3: Elements for Building Supervised Statistical Machine Learning Models -- 3.1 Definition of a Linear Multiple Regression Model -- 3.2 Fitting a Linear Multiple Regression Model via the Ordinary Least Square (OLS) Method -- 3.3 Fitting the Linear Multiple Regression Model via the Maximum Likelihood (ML) Method -- 3.4 Fitting the Linear Multiple Regression Model via the Gradient Descent (GD) Method -- 3.5 Advantages and Disadvantages of Standard Linear Regression Models (OLS and MLR).
3.6 Regularized Linear Multiple Regression Model -- 3.6.1 Ridge Regression -- 3.6.2 Lasso Regression -- 3.7 Logistic Regression -- 3.7.1 Logistic Ridge Regression -- 3.7.2 Lasso Logistic Regression -- Appendix 1: R Code for Ridge Regression Used in Example 2 -- References -- Chapter 4: Overfitting, Model Tuning, and Evaluation of Prediction Performance -- 4.1 The Problem of Overfitting and Underfitting -- 4.2 The Trade-Off Between Prediction Accuracy and Model Interpretability -- 4.3 Cross-validation -- 4.3.1 The Single Hold-Out Set Approach -- 4.3.2 The k-Fold Cross-validation -- 4.3.3 The Leave-One-Out Cross-validation -- 4.3.4 The Leave-m-Out Cross-validation -- 4.3.5 Random Cross-validation -- 4.3.6 The Leave-One-Group-Out Cross-validation -- 4.3.7 Bootstrap Cross-validation -- 4.3.8 Incomplete Block Cross-validation -- 4.3.9 Random Cross-validation with Blocks -- 4.3.10 Other Options and General Comments on Cross-validation -- 4.4 Model Tuning -- 4.4.1 Why Is Model Tuning Important? -- 4.4.2 Methods for Hyperparameter Tuning (Grid Search, Random Search, etc.) -- 4.5 Metrics for the Evaluation of Prediction Performance -- 4.5.1 Quantitative Measures of Prediction Performance -- 4.5.2 Binary and Ordinal Measures of Prediction Performance -- 4.5.3 Count Measures of Prediction Performance -- References -- Chapter 5: Linear Mixed Models -- 5.1 General of Linear Mixed Models -- 5.2 Estimation of the Linear Mixed Model -- 5.2.1 Maximum Likelihood Estimation -- 5.2.1.1 EM Algorithm -- E Step -- M Step -- 5.2.1.2 REML -- 5.2.1.3 BLUPs -- 5.3 Linear Mixed Models in Genomic Prediction -- 5.4 Illustrative Examples of the Univariate LMM -- 5.5 Multi-trait Genomic Linear Mixed-Effects Models -- 5.6 Final Comments -- Appendix 1 -- Appendix 2 -- Appendix 3 -- Appendix 4 -- Appendix 5 -- Appendix 6 -- Appendix 7 -- References.
Chapter 6: Bayesian Genomic Linear Regression -- 6.1 Bayes Theorem and Bayesian Linear Regression -- 6.2 Bayesian Genome-Based Ridge Regression -- 6.3 Bayesian GBLUP Genomic Model -- 6.4 Genomic-Enabled Prediction BayesA Model -- 6.5 Genomic-Enabled Prediction BayesB and BayesC Models -- 6.6 Genomic-Enabled Prediction Bayesian Lasso Model -- 6.7 Extended Predictor in Bayesian Genomic Regression Models -- 6.8 Bayesian Genomic Multi-trait Linear Regression Model -- 6.8.1 Genomic Multi-trait Linear Model -- 6.9 Bayesian Genomic Multi-trait and Multi-environment Model (BMTME) -- Appendix 1 -- Appendix 2: Setting Hyperparameters for the Prior Distributions of the BRR Model -- Appendix 3: R Code Example 1 -- Appendix 4: R Code Example 2 -- Appendix 5 -- R Code Example 3 -- R Code for Example 4 -- References -- Chapter 7: Bayesian and Classical Prediction Models for Categorical and Count Data -- 7.1 Introduction -- 7.2 Bayesian Ordinal Regression Model -- 7.2.1 Illustrative Examples -- 7.3 Ordinal Logistic Regression -- 7.4 Penalized Multinomial Logistic Regression -- 7.4.1 Illustrative Examples for Multinomial Penalized Logistic Regression -- 7.5 Penalized Poisson Regression -- 7.6 Final Comments -- Appendix 1 -- Appendix 2 -- Appendix 3 -- Appendix 4 (Example 4) -- Appendix 5 -- Appendix 6 -- References -- Chapter 8: Reproducing Kernel Hilbert Spaces Regression and Classification Methods -- 8.1 The Reproducing Kernel Hilbert Spaces (RKHS) -- 8.2 Generalized Kernel Model -- 8.2.1 Parameter Estimation Under the Frequentist Paradigm -- 8.2.2 Kernels -- 8.2.3 Kernel Trick -- 8.2.4 Popular Kernel Functions -- 8.2.5 A Two Separate Step Process for Building Kernel Machines -- 8.3 Kernel Methods for Gaussian Response Variables -- 8.4 Kernel Methods for Binary Response Variables -- 8.5 Kernel Methods for Categorical Response Variables.
8.6 The Linear Mixed Model with Kernels -- 8.7 Hyperparameter Tuning for Building the Kernels -- 8.8 Bayesian Kernel Methods -- 8.8.1 Extended Predictor Under the Bayesian Kernel BLUP -- 8.8.2 Extended Predictor Under the Bayesian Kernel BLUP with a Binary Response Variable -- 8.8.3 Extended Predictor Under the Bayesian Kernel BLUP with a Categorical Response Variable -- 8.9 Multi-trait Bayesian Kernel -- 8.10 Kernel Compression Methods -- 8.10.1 Extended Predictor Under the Approximate Kernel Method -- 8.11 Final Comments -- Appendix 1 -- Appendix 2 -- Appendix 3 -- Appendix 4 -- Appendix 5 -- Appendix 6 -- Appendix 7 -- Appendix 8 -- Appendix 9 -- Appendix 10 -- Appendix 11 -- References -- Chapter 9: Support Vector Machines and Support Vector Regression -- 9.1 Introduction to Support Vector Machine -- 9.2 Hyperplane -- 9.3 Maximum Margin Classifier -- 9.3.1 Derivation of the Maximum Margin Classifier -- 9.3.2 Wolfe Dual -- 9.4 Derivation of the Support Vector Classifier -- 9.5 Support Vector Machine -- 9.5.1 One-Versus-One Classification -- 9.5.2 One-Versus-All Classification -- 9.6 Support Vector Regression -- Appendix 1 -- Appendix 2 -- Appendix 3 -- References -- Chapter 10: Fundamentals of Artificial Neural Networks and Deep Learning -- 10.1 The Inspiration for the Neural Network Model -- 10.2 The Building Blocks of Artificial Neural Networks -- 10.3 Activation Functions -- 10.3.1 Linear -- 10.3.2 Rectifier Linear Unit (ReLU) -- 10.3.3 Leaky ReLU -- 10.3.4 Sigmoid -- 10.3.5 Softmax -- 10.3.6 Tanh -- 10.4 The Universal Approximation Theorem -- 10.5 Artificial Neural Network Topologies -- 10.6 Successful Applications of ANN and DL -- 10.7 Loss Functions -- 10.7.1 Loss Functions for Continuous Outcomes -- 10.7.2 Loss Functions for Binary and Ordinal Outcomes -- 10.7.3 Regularized Loss Functions -- 10.7.4 Early Stopping Method of Training.
10.8 The King Algorithm for Training Artificial Neural Networks: Backpropagation -- 10.8.1 Backpropagation Algorithm: Online Version -- 10.8.1.1 Feedforward Part -- 10.8.1.2 Backpropagation Part -- 10.8.2 Illustrative Example 10.1: A Hand Computation -- 10.8.3 Illustrative Example 10.2-By Hand Computation -- References -- Chapter 11: Artificial Neural Networks and Deep Learning for Genomic Prediction of Continuous Outcomes -- 11.1 Hyperparameters to Be Tuned in ANN and DL -- 11.1.1 Network Topology -- 11.1.2 Activation Functions -- 11.1.3 Loss Function -- 11.1.4 Number of Hidden Layers -- 11.1.5 Number of Neurons in Each Layer -- 11.1.6 Regularization Type -- 11.1.7 Learning Rate -- 11.1.8 Number of Epochs and Number of Batches -- 11.1.9 Normalization Scheme for Input Data -- 11.2 Popular DL Frameworks -- 11.3 Optimizers -- 11.4 Illustrative Examples -- Appendix 1 -- Appendix 2 -- Appendix 3 -- Appendix 4 -- Appendix 5 -- References -- Chapter 12: Artificial Neural Networks and Deep Learning for Genomic Prediction of Binary, Ordinal, and Mixed Outcomes -- 12.1 Training DNN with Binary Outcomes -- 12.2 Training DNN with Categorical (Ordinal) Outcomes -- 12.3 Training DNN with Count Outcomes -- 12.4 Training DNN with Multivariate Outcomes -- 12.4.1 DNN with Multivariate Continuous Outcomes -- 12.4.2 DNN with Multivariate Binary Outcomes -- 12.4.3 DNN with Multivariate Ordinal Outcomes -- 12.4.4 DNN with Multivariate Count Outcomes -- 12.4.5 DNN with Multivariate Mixed Outcomes -- Appendix 1 -- Appendix 2 -- Appendix 3 -- Appendix 4 -- Appendix 5 -- References -- Chapter 13: Convolutional Neural Networks -- 13.1 The Importance of Convolutional Neural Networks -- 13.2 Tensors -- 13.3 Convolution -- 13.4 Pooling -- 13.5 Convolutional Operation for 1D Tensor for Sequence Data -- 13.6 Motivation of CNN.
13.7 Why Are CNNs Preferred over Feedforward Deep Neural Networks for Processing Images?.
Record Nr. UNINA-9910522999103321
Montesinos López Osval Antonio  
Cham, : Springer Nature, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Personalized deeper learning : blueprints for teaching complex cognitive, social-emotional, and digital skills / / James A. Bellanca
Personalized deeper learning : blueprints for teaching complex cognitive, social-emotional, and digital skills / / James A. Bellanca
Autore Bellanca James A. <1937->
Pubbl/distr/stampa Bloomington, Indiana : , : Solution Tree Press, , [2021]
Descrizione fisica 1 online resource (xi, 258 pages) : illustrations
Disciplina 371.394
Collana Gale eBooks
Soggetto topico Individualized instruction
Self-managed learning
Machine learning
Soggetto non controllato Deep learning
ISBN 1-951075-42-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto chapter 1. Personalized learning plans -- chapter 2. Engagement and trust -- chapter 3. Outcome-driven instruction and assessment -- chapter 4. Student agency -- chapter 5. Skill transfer -- chapter 6. The complex cognitive skill set -- chapter 7. The social-emotional skill set -- chapter 8. The digital skill set.
Record Nr. UNINA-9910795397203321
Bellanca James A. <1937->  
Bloomington, Indiana : , : Solution Tree Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Personalized deeper learning : blueprints for teaching complex cognitive, social-emotional, and digital skills / / James A. Bellanca
Personalized deeper learning : blueprints for teaching complex cognitive, social-emotional, and digital skills / / James A. Bellanca
Autore Bellanca James A. <1937->
Pubbl/distr/stampa Bloomington, Indiana : , : Solution Tree Press, , [2021]
Descrizione fisica 1 online resource (xi, 258 pages) : illustrations
Disciplina 371.394
Collana Gale eBooks
Soggetto topico Individualized instruction
Self-managed learning
Machine learning
Soggetto non controllato Deep learning
ISBN 1-951075-42-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto chapter 1. Personalized learning plans -- chapter 2. Engagement and trust -- chapter 3. Outcome-driven instruction and assessment -- chapter 4. Student agency -- chapter 5. Skill transfer -- chapter 6. The complex cognitive skill set -- chapter 7. The social-emotional skill set -- chapter 8. The digital skill set.
Record Nr. UNINA-9910813819503321
Bellanca James A. <1937->  
Bloomington, Indiana : , : Solution Tree Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantitative PET and SPECT
Quantitative PET and SPECT
Autore de Geus-Oei Lioe-Fee
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (212 p.)
Soggetto topico Medicine
Clinical & internal medicine
Soggetto non controllato PET
SPECT
PET/CT
SPECT/CT
Absolute quantification
Quantitative accuracy
Dynamic PET
Phantoms
Repeatability
Tumor delineation
Prognosis
Dosimetry
Radiomics
Artificial intelligence
Deep learning
Imaging biomarkers
Tumor segmentation
Harmonization
ISBN 3-0365-5616-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637780503321
de Geus-Oei Lioe-Fee  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui