top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
3D Point Cloud Analysis : Traditional, Deep Learning, and Explainable Machine Learning Methods / Shan Liu ... [et al.]
3D Point Cloud Analysis : Traditional, Deep Learning, and Explainable Machine Learning Methods / Shan Liu ... [et al.]
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xiv, 146 p. : ill. ; 24 cm
Soggetto topico 68-XX - Computer science [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
68T07 - Artificial neural networks and deep learning [MSC 2020]
68T45 - Machine vision and scene understanding [MSC 2020]
Soggetto non controllato 3D computer vision
3D object detection
3D object recognition
Deep Learning
Explainable machine learning
Machine learning
ModelNet40
Point cloud analysis
Point cloud classification
Point cloud part segmentation
Point cloud registration
PointHop
R-PointHop
Saab transform
ShapeNet
Successive subspace learning
Unsupervised learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0274505
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
3D Point Cloud Analysis : Traditional, Deep Learning, and Explainable Machine Learning Methods / Shan Liu ... [et al.]
3D Point Cloud Analysis : Traditional, Deep Learning, and Explainable Machine Learning Methods / Shan Liu ... [et al.]
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xiv, 146 p. : ill. ; 24 cm
Soggetto topico 68-XX - Computer science [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
68T07 - Artificial neural networks and deep learning [MSC 2020]
68T45 - Machine vision and scene understanding [MSC 2020]
Soggetto non controllato 3D computer vision
3D object detection
3D object recognition
Deep Learning
Explainable machine learning
Machine learning
ModelNet40
Point cloud analysis
Point cloud classification
Point cloud part segmentation
Point cloud registration
PointHop
R-PointHop
Saab transform
ShapeNet
Successive subspace learning
Unsupervised learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00274505
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
AI - Limits and Prospects of Artificial Intelligence / / ed. by Peter Klimczak, Christer Petersen
AI - Limits and Prospects of Artificial Intelligence / / ed. by Peter Klimczak, Christer Petersen
Pubbl/distr/stampa Bielefeld : , : transcript Verlag, , [2023]
Descrizione fisica 1 online resource (290 p.)
Collana KI-Kritik
Soggetto topico SOCIAL SCIENCE / Media Studies
Soggetto non controllato Algorithms
Big Data
Computer Sciences
Deep Learning
Digital Media
Ethics
Internet
Machine Learning
Media Philosophy
Media Studies
Sociology of Media
Technology
ISBN 3-8394-5732-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Editorial -- Contents -- Preface -- Learning Algorithms -- Transgressing the Boundaries -- Limits and Prospects of Ethics in the Context of Law and Society by the Example of Accident Algorithms of Autonomous Driving -- Limits and Prospects of Big Data and Small Data Approaches in AI Applications -- Artificial Intelligence and/as Risk -- When You Can’t Have What You Want -- Man-Machines -- Trends in Explainable Artificial Intelligence for Non-Experts -- Machine Dreaming -- Let’s Fool That Stupid AI -- Authors
Record Nr. UNISA-996545359503316
Bielefeld : , : transcript Verlag, , [2023]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
AI - Limits and Prospects of Artificial Intelligence / / ed. by Peter Klimczak, Christer Petersen
AI - Limits and Prospects of Artificial Intelligence / / ed. by Peter Klimczak, Christer Petersen
Edizione [1st ed.]
Pubbl/distr/stampa Bielefeld : , : transcript Verlag, , [2023]
Descrizione fisica 1 online resource (290 p.)
Collana KI-Kritik
Soggetto topico SOCIAL SCIENCE / Media Studies
Soggetto non controllato Algorithms
Big Data
Computer Sciences
Deep Learning
Digital Media
Ethics
Internet
Machine Learning
Media Philosophy
Media Studies
Sociology of Media
Technology
ISBN 3-8394-5732-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Editorial -- Contents -- Preface -- Learning Algorithms -- Transgressing the Boundaries -- Limits and Prospects of Ethics in the Context of Law and Society by the Example of Accident Algorithms of Autonomous Driving -- Limits and Prospects of Big Data and Small Data Approaches in AI Applications -- Artificial Intelligence and/as Risk -- When You Can’t Have What You Want -- Man-Machines -- Trends in Explainable Artificial Intelligence for Non-Experts -- Machine Dreaming -- Let’s Fool That Stupid AI -- Authors
Record Nr. UNINA-9910743294803321
Bielefeld : , : transcript Verlag, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces / Sergei Pereverzyev
An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces / Sergei Pereverzyev
Autore Pereverzyev, Sergei
Pubbl/distr/stampa Cham, : Birkhäuser, : Springer, 2022
Descrizione fisica xiv, 152 p. : ill. ; 24 cm
Soggetto non controllato Artificial Intelligence
Deep Learning
Examples
Integral operators
Learning theory
Linear regularization Tikhonov
RKHS deep neural networks
Ranking learning
Regression learning
Regularization theory
Reinforcement Learning
Reproducing Kernel Hilbert spaces
Statistical learning
Unsupervised Domain Adaptation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0276167
Pereverzyev, Sergei  
Cham, : Birkhäuser, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces / Sergei Pereverzyev
An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces / Sergei Pereverzyev
Autore Pereverzyev, Sergei
Pubbl/distr/stampa Cham, : Birkhäuser, : Springer, 2022
Descrizione fisica xiv, 152 p. : ill. ; 24 cm
Soggetto topico 62G05 - Nonparametric estimation [MSC 2020]
65C20 - Probabilistic models, generic numerical methods in probability and statistics [MSC 2020]
65J20 - Numerical solutions of ill-posed problems in abstract spaces; regularization [MSC 2020]
68Q32 - Computational learning theory [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
Soggetto non controllato Artificial Intelligence
Deep Learning
Examples
Integral operators
Learning theory
Linear regularization Tikhonov
RKHS deep neural networks
Ranking learning
Regression learning
Regularization theory
Reinforcement Learning
Reproducing Kernel Hilbert spaces
Statistical learning
Unsupervised Domain Adaptation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00276167
Pereverzyev, Sergei  
Cham, : Birkhäuser, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Beam Test Calorimeter Prototypes for the CMS Calorimeter Endcap Upgrade : Qualification, Performance Validation and Fast Generative Modelling : Doctoral Thesis accepted by the Rheinisch Westfälische Technische Hochschule, Aachen, Germany / Thorben Quast
Beam Test Calorimeter Prototypes for the CMS Calorimeter Endcap Upgrade : Qualification, Performance Validation and Fast Generative Modelling : Doctoral Thesis accepted by the Rheinisch Westfälische Technische Hochschule, Aachen, Germany / Thorben Quast
Autore Quast, Thorben
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xxii, 277 p. : ill. ; 24 cm
Soggetto non controllato Calorimeter
Compact muon solenoid
Deep Learning
Generative Modelling
Large Hadron Collider
Particle physics
Silicon
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00282286
Quast, Thorben  
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Big Data Privacy and Security in Smart Cities / Richard Jiang ... [et al.] editors
Big Data Privacy and Security in Smart Cities / Richard Jiang ... [et al.] editors
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica vi, 248 p. : ill. ; 24 cm
Soggetto non controllato Cloud Security
Data encryption
Deep Learning
Forensics and Legislation
Machine learning
Medical Data
Privacy and Security Issues
Social media
e-Commercial
e-Governance
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00283381
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Bioimage Data Analysis Workflows ‒ Advanced Components and Methods / / edited by Kota Miura, Nataša Sladoje
Bioimage Data Analysis Workflows ‒ Advanced Components and Methods / / edited by Kota Miura, Nataša Sladoje
Autore Miura Kota
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, : Springer Nature, 2022
Descrizione fisica 1 online resource (X, 212 p. 265 illus. in color.)
Disciplina 571.6
Collana Learning Materials in Biosciences
Soggetto topico Cytology
Bioinformatics
Imaging systems in biology
Cell Biology
Computational and Systems Biology
Biological Imaging
Microscòpia electrònica
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Analyzing Image Data in Biology
Building a Bioimage Analysis Workflow
Computational Analysis
Chosing the Correct Components for Given Biological Questions
Data Handling and Plotting
Deep Learning
Fast Computation
GPU-Acceleration
Handling Biological data
Machine Learning
Phyton
Processing Language
Understanding Bioimage Analysis Software
ISBN 3-030-76394-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Batch Processing Methods in ImageJ -- Python: Data Handling, Analysis and Plotting -- Building a Bioimage Analysis Workflow Using Deep Learning -- GPU-Accelerating ImageJ Macro Image Processing Workflows Using CLIJ -- How to Do the Deconstruction of Bioimage Analysis Workflows: A Case Study with SurfCut -- i.2.i. with the (Fruit) Fly: Quantifying Position Effect Variegation in Drosophila Melanogaster -- A MATLAB Pipeline for Spatiotemporal Quantification of Monolayer Cell Migration.
Record Nr. UNINA-9910597155503321
Miura Kota  
Cham, : Springer Nature, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Black Box Optimization, Machine Learning, and No-Free Lunch Theorems / Panos M. Pardalos, Varvara Rasskazova, Michael N. Vrahatis editors
Black Box Optimization, Machine Learning, and No-Free Lunch Theorems / Panos M. Pardalos, Varvara Rasskazova, Michael N. Vrahatis editors
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica x, 388 p. : ill. ; 24 cm
Soggetto topico 68-XX - Computer science [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
00B15 - Collections of articles of miscellaneous specific interest [MSC 2020]
90-XX - Operations research, mathematical programming [MSC 2020]
90C59 - Approximation methods and heuristics in mathematical programming [MSC 2020]
Soggetto non controllato Black box optimization
Data driven computation
Data sciences problems
Deep Learning
Fuzzy Optimization
Machine learning
No-free lunch theorems
Non-free theorems in machine learning
Non-free theorems in optimization
Stochastic Optimization
Tuning algorithms
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0274601
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui