The hypoelliptic Laplacian and Ray-Singer metrics [[electronic resource] /] / Jean-Michel Bismut, Gilles Lebeau |
Autore | Bismut Jean-Michel |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, : Princeton University Press, 2008 |
Descrizione fisica | 1 online resource (378 p.) |
Disciplina | 515/.7242 |
Altri autori (Persone) | LebeauGilles |
Collana | Annals of mathematics studies |
Soggetto topico |
Differential equations, Hypoelliptic
Laplacian operator Metric spaces |
Soggetto non controllato |
Alexander Grothendieck
Analytic function Asymptote Asymptotic expansion Berezin integral Bijection Brownian dynamics Brownian motion Chaos theory Chern class Classical Wiener space Clifford algebra Cohomology Combination Commutator Computation Connection form Coordinate system Cotangent bundle Covariance matrix Curvature tensor Curvature De Rham cohomology Derivative Determinant Differentiable manifold Differential operator Dirac operator Direct proof Eigenform Eigenvalues and eigenvectors Ellipse Embedding Equation Estimation Euclidean space Explicit formula Explicit formulae (L-function) Feynman–Kac formula Fiber bundle Fokker–Planck equation Formal power series Fourier series Fourier transform Fredholm determinant Function space Girsanov theorem Ground state Heat kernel Hilbert space Hodge theory Holomorphic function Holomorphic vector bundle Hypoelliptic operator Integration by parts Invertible matrix Logarithm Malliavin calculus Martingale (probability theory) Matrix calculus Mellin transform Morse theory Notation Parameter Parametrix Parity (mathematics) Polynomial Principal bundle Probabilistic method Projection (linear algebra) Rectangle Resolvent set Ricci curvature Riemann–Roch theorem Scientific notation Self-adjoint operator Self-adjoint Sign convention Smoothness Sobolev space Spectral theory Square root Stochastic calculus Stochastic process Summation Supertrace Symmetric space Tangent space Taylor series Theorem Theory Torus Trace class Translational symmetry Transversality (mathematics) Uniform convergence Variable (mathematics) Vector bundle Vector space Wave equation |
ISBN |
1-282-45837-X
9786612458378 1-4008-2906-2 |
Classificazione | SK 620 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Chapter 1. Elliptic Riemann-Roch-Grothendieck and flat vector bundles -- Chapter 2. The hypoelliptic Laplacian on the cotangent bundle -- Chapter 3. Hodge theory, the hypoelliptic Laplacian and its heat kernel -- Chapter 4. Hypoelliptic Laplacians and odd Chern forms -- Chapter 5. The limit as t → +∞ and b → 0 of the superconnection forms -- Chapter 6. Hypoelliptic torsion and the hypoelliptic Ray-Singer metrics -- Chapter 7. The hypoelliptic torsion forms of a vector bundle -- Chapter 8. Hypoelliptic and elliptic torsions: a comparison formula -- Chapter 9. A comparison formula for the Ray-Singer metrics -- Chapter 10. The harmonic forms for b → 0 and the formal Hodge theorem -- Chapter 11. A proof of equation (8.4.6) -- Chapter 12. A proof of equation (8.4.8) -- Chapter 13. A proof of equation (8.4.7) -- Chapter 14. The integration by parts formula -- Chapter 15. The hypoelliptic estimates -- Chapter 16. Harmonic oscillator and the J0 function -- Chapter 17. The limit of A'2φb,±H as b → 0 -- Bibliography -- Subject Index -- Index of Notation |
Record Nr. | UNINA-9910781084803321 |
Bismut Jean-Michel
![]() |
||
Princeton, : Princeton University Press, 2008 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Lie Equations, Vol. I : General Theory. (AM-73) / / Donald Clayton Spencer, Antonio Kumpera |
Autore | Kumpera Antonio |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (312 pages) |
Disciplina | 512/.55 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Lie groups
Lie algebras Differential equations |
Soggetto non controllato |
Adjoint representation
Adjoint Affine transformation Alexander Grothendieck Analytic function Associative algebra Atlas (topology) Automorphism Bernhard Riemann Big O notation Bundle map Category of topological spaces Cauchy–Riemann equations Coefficient Commutative diagram Commutator Complex conjugate Complex group Complex manifold Computation Conformal map Continuous function Coordinate system Corollary Cotangent bundle Curvature tensor Deformation theory Derivative Diagonal Diffeomorphism Differentiable function Differential form Differential operator Differential structure Direct proof Direct sum Ellipse Endomorphism Equation Exact sequence Exactness Existential quantification Exponential function Exponential map (Riemannian geometry) Exterior derivative Fiber bundle Fibration Frame bundle Frobenius theorem (differential topology) Frobenius theorem (real division algebras) Group isomorphism Groupoid Holomorphic function Homeomorphism Integer J-invariant Jacobian matrix and determinant Jet bundle Linear combination Linear map Manifold Maximal ideal Model category Morphism Nonlinear system Open set Parameter Partial derivative Partial differential equation Pointwise Presheaf (category theory) Pseudo-differential operator Pseudogroup Quantity Regular map (graph theory) Requirement Riemann surface Right inverse Scalar multiplication Sheaf (mathematics) Special case Structure tensor Subalgebra Subcategory Subgroup Submanifold Subset Tangent bundle Tangent space Tangent vector Tensor field Tensor product Theorem Torsion tensor Transpose Variable (mathematics) Vector bundle Vector field Vector space Volume element |
ISBN | 1-4008-8173-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Foreword -- Glossary of Symbols -- Table of Contents -- Introduction -- A. Integrability of Lie Structures -- B. Deformation Theory of Lie Structures -- Chapter I. Jet Sheaves and Differential Equations -- Chapter II. Linear Lie Equations -- Chapter III. Derivations and Brackets -- Chapter IV. Non-Linear Complexes -- Chapter V. Derivations of Jet Forms -- Appendix. Lie Groupoids -- References -- Index |
Record Nr. | UNINA-9910154751903321 |
Kumpera Antonio
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|