top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The hypoelliptic Laplacian and Ray-Singer metrics [[electronic resource] /] / Jean-Michel Bismut, Gilles Lebeau
The hypoelliptic Laplacian and Ray-Singer metrics [[electronic resource] /] / Jean-Michel Bismut, Gilles Lebeau
Autore Bismut Jean-Michel
Edizione [Course Book]
Pubbl/distr/stampa Princeton, : Princeton University Press, 2008
Descrizione fisica 1 online resource (378 p.)
Disciplina 515/.7242
Altri autori (Persone) LebeauGilles
Collana Annals of mathematics studies
Soggetto topico Differential equations, Hypoelliptic
Laplacian operator
Metric spaces
Soggetto non controllato Alexander Grothendieck
Analytic function
Asymptote
Asymptotic expansion
Berezin integral
Bijection
Brownian dynamics
Brownian motion
Chaos theory
Chern class
Classical Wiener space
Clifford algebra
Cohomology
Combination
Commutator
Computation
Connection form
Coordinate system
Cotangent bundle
Covariance matrix
Curvature tensor
Curvature
De Rham cohomology
Derivative
Determinant
Differentiable manifold
Differential operator
Dirac operator
Direct proof
Eigenform
Eigenvalues and eigenvectors
Ellipse
Embedding
Equation
Estimation
Euclidean space
Explicit formula
Explicit formulae (L-function)
Feynman–Kac formula
Fiber bundle
Fokker–Planck equation
Formal power series
Fourier series
Fourier transform
Fredholm determinant
Function space
Girsanov theorem
Ground state
Heat kernel
Hilbert space
Hodge theory
Holomorphic function
Holomorphic vector bundle
Hypoelliptic operator
Integration by parts
Invertible matrix
Logarithm
Malliavin calculus
Martingale (probability theory)
Matrix calculus
Mellin transform
Morse theory
Notation
Parameter
Parametrix
Parity (mathematics)
Polynomial
Principal bundle
Probabilistic method
Projection (linear algebra)
Rectangle
Resolvent set
Ricci curvature
Riemann–Roch theorem
Scientific notation
Self-adjoint operator
Self-adjoint
Sign convention
Smoothness
Sobolev space
Spectral theory
Square root
Stochastic calculus
Stochastic process
Summation
Supertrace
Symmetric space
Tangent space
Taylor series
Theorem
Theory
Torus
Trace class
Translational symmetry
Transversality (mathematics)
Uniform convergence
Variable (mathematics)
Vector bundle
Vector space
Wave equation
ISBN 1-282-45837-X
9786612458378
1-4008-2906-2
Classificazione SK 620
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Introduction -- Chapter 1. Elliptic Riemann-Roch-Grothendieck and flat vector bundles -- Chapter 2. The hypoelliptic Laplacian on the cotangent bundle -- Chapter 3. Hodge theory, the hypoelliptic Laplacian and its heat kernel -- Chapter 4. Hypoelliptic Laplacians and odd Chern forms -- Chapter 5. The limit as t → +∞ and b → 0 of the superconnection forms -- Chapter 6. Hypoelliptic torsion and the hypoelliptic Ray-Singer metrics -- Chapter 7. The hypoelliptic torsion forms of a vector bundle -- Chapter 8. Hypoelliptic and elliptic torsions: a comparison formula -- Chapter 9. A comparison formula for the Ray-Singer metrics -- Chapter 10. The harmonic forms for b → 0 and the formal Hodge theorem -- Chapter 11. A proof of equation (8.4.6) -- Chapter 12. A proof of equation (8.4.8) -- Chapter 13. A proof of equation (8.4.7) -- Chapter 14. The integration by parts formula -- Chapter 15. The hypoelliptic estimates -- Chapter 16. Harmonic oscillator and the J0 function -- Chapter 17. The limit of A'2φb,±H as b → 0 -- Bibliography -- Subject Index -- Index of Notation
Record Nr. UNINA-9910781084803321
Bismut Jean-Michel  
Princeton, : Princeton University Press, 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Lie Equations, Vol. I : General Theory. (AM-73) / / Donald Clayton Spencer, Antonio Kumpera
Lie Equations, Vol. I : General Theory. (AM-73) / / Donald Clayton Spencer, Antonio Kumpera
Autore Kumpera Antonio
Pubbl/distr/stampa Princeton, NJ : , : Princeton University Press, , [2016]
Descrizione fisica 1 online resource (312 pages)
Disciplina 512/.55
Collana Annals of Mathematics Studies
Soggetto topico Lie groups
Lie algebras
Differential equations
Soggetto non controllato Adjoint representation
Adjoint
Affine transformation
Alexander Grothendieck
Analytic function
Associative algebra
Atlas (topology)
Automorphism
Bernhard Riemann
Big O notation
Bundle map
Category of topological spaces
Cauchy–Riemann equations
Coefficient
Commutative diagram
Commutator
Complex conjugate
Complex group
Complex manifold
Computation
Conformal map
Continuous function
Coordinate system
Corollary
Cotangent bundle
Curvature tensor
Deformation theory
Derivative
Diagonal
Diffeomorphism
Differentiable function
Differential form
Differential operator
Differential structure
Direct proof
Direct sum
Ellipse
Endomorphism
Equation
Exact sequence
Exactness
Existential quantification
Exponential function
Exponential map (Riemannian geometry)
Exterior derivative
Fiber bundle
Fibration
Frame bundle
Frobenius theorem (differential topology)
Frobenius theorem (real division algebras)
Group isomorphism
Groupoid
Holomorphic function
Homeomorphism
Integer
J-invariant
Jacobian matrix and determinant
Jet bundle
Linear combination
Linear map
Manifold
Maximal ideal
Model category
Morphism
Nonlinear system
Open set
Parameter
Partial derivative
Partial differential equation
Pointwise
Presheaf (category theory)
Pseudo-differential operator
Pseudogroup
Quantity
Regular map (graph theory)
Requirement
Riemann surface
Right inverse
Scalar multiplication
Sheaf (mathematics)
Special case
Structure tensor
Subalgebra
Subcategory
Subgroup
Submanifold
Subset
Tangent bundle
Tangent space
Tangent vector
Tensor field
Tensor product
Theorem
Torsion tensor
Transpose
Variable (mathematics)
Vector bundle
Vector field
Vector space
Volume element
ISBN 1-4008-8173-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Foreword -- Glossary of Symbols -- Table of Contents -- Introduction -- A. Integrability of Lie Structures -- B. Deformation Theory of Lie Structures -- Chapter I. Jet Sheaves and Differential Equations -- Chapter II. Linear Lie Equations -- Chapter III. Derivations and Brackets -- Chapter IV. Non-Linear Complexes -- Chapter V. Derivations of Jet Forms -- Appendix. Lie Groupoids -- References -- Index
Record Nr. UNINA-9910154751903321
Kumpera Antonio  
Princeton, NJ : , : Princeton University Press, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui