Combinatorics of Train Tracks. (AM-125), Volume 125 / / R. C. Penner, John L. Harer |
Autore | Penner R. C. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (233 pages) : illustrations |
Disciplina | 511/.6 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Geodesics (Mathematics)
CW complexes Combinatorial analysis |
Soggetto non controllato |
Ambient isotopy
Analytic function Axiom Brouwer fixed-point theorem CW complex Cantor set Cardinality Change of basis Coefficient Combinatorics Compactification (mathematics) Conjugacy class Connected component (graph theory) Connectivity (graph theory) Coordinate system Cotangent space Covering space Deformation theory Dehn twist Diffeomorphism Differential topology Disjoint sets Disjoint union Disk (mathematics) Eigenvalues and eigenvectors Embedding Equation Equivalence class (music) Equivalence class Equivalence relation Euclidean space Euler characteristic Explicit formula Explicit formulae (L-function) Fiber bundle Foliation Fuchsian group Geodesic curvature Geometry Harmonic function Homeomorphism Homotopy Horocycle Hyperbolic geometry Hyperbolic motion Hyperbolic space Incidence matrix Inequality (mathematics) Infimum and supremum Injective function Intersection (set theory) Intersection number (graph theory) Intersection number Interval (mathematics) Invariance of domain Invariant measure Jordan curve theorem Kähler manifold Lexicographical order Linear map Linear subspace Mapping class group Mathematical induction Monogon Natural topology Orientability Pair of pants (mathematics) Parallel curve Parametrization Parity (mathematics) Projective space Quadratic differential Scientific notation Sign (mathematics) Special case Spectral radius Standard basis Subsequence Subset Summation Support (mathematics) Symplectic geometry Symplectomorphism Tangent space Tangent vector Tangent Teichmüller space Theorem Topological space Topology Total order Train track (mathematics) Transitive relation Transpose Transversality (mathematics) Transverse measure Uniformization theorem Unit tangent bundle Unit vector Vector field |
ISBN | 1-4008-8245-1 |
Classificazione | SI 830 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Acknowledgements -- Chapter 1. The Basic Theor -- Chapter 2. Combinatorial Equivalence -- Chapter 3. The Structure of ML0 -- Epilogue -- Addendum. The Action of Mapping Classes on ML0 -- Bibliography |
Record Nr. | UNINA-9910154745603321 |
Penner R. C. | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Introduction to Toric Varieties. (AM-131), Volume 131 / / William Fulton |
Autore | Fulton William |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (171 pages) : illustrations |
Disciplina | 516.3/53 |
Collana | Annals of Mathematics Studies |
Soggetto topico | Toric varieties |
Soggetto non controllato |
Addition
Affine plane Affine space Affine variety Alexander Grothendieck Alexander duality Algebraic curve Algebraic group Atiyah–Singer index theorem Automorphism Betti number Big O notation Characteristic class Chern class Chow group Codimension Cohomology Combinatorics Commutative property Complete intersection Convex polytope Convex set Coprime integers Cotangent space Dedekind sum Dimension (vector space) Dimension Direct proof Discrete valuation ring Discrete valuation Disjoint union Divisor (algebraic geometry) Divisor Dual basis Dual space Equation Equivalence class Equivariant K-theory Euler characteristic Exact sequence Explicit formula Facet (geometry) Fundamental group Graded ring Grassmannian H-vector Hirzebruch surface Hodge theory Homogeneous coordinates Homomorphism Hypersurface Intersection theory Invertible matrix Invertible sheaf Isoperimetric inequality Lattice (group) Leray spectral sequence Limit point Line bundle Line segment Linear subspace Local ring Mathematical induction Mixed volume Moduli space Moment map Monotonic function Natural number Newton polygon Open set Picard group Pick's theorem Polytope Projective space Quadric Quotient space (topology) Regular sequence Relative interior Resolution of singularities Restriction (mathematics) Resultant Riemann–Roch theorem Serre duality Sign (mathematics) Simplex Simplicial complex Simultaneous equations Spectral sequence Subgroup Subset Summation Surjective function Tangent bundle Theorem Topology Toric variety Unit disk Vector space Weil conjecture Zariski topology |
ISBN | 1-4008-8252-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Errata -- Chapter 1. Definitions and examples -- Chapter 2. Singularities and compactness -- Chapter 3. Orbits, topology, and line bundles -- Chapter 4. Moment maps and the tangent bundle -- Chapter 5. Intersection theory -- Notes -- References -- Index of Notation -- Index |
Record Nr. | UNINA-9910154749903321 |
Fulton William | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Unitary Representations of Reductive Lie Groups. (AM-118), Volume 118 / / David A. Vogan |
Autore | Vogan David A. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (320 pages) |
Disciplina | 512/.55 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Lie groups
Representations of Lie groups |
Soggetto non controllato |
Abelian group
Adjoint representation Annihilator (ring theory) Atiyah–Singer index theorem Automorphic form Automorphism Cartan subgroup Circle group Class function (algebra) Classification theorem Cohomology Commutator subgroup Complete metric space Complex manifold Conjugacy class Cotangent space Dimension (vector space) Discrete series representation Dixmier conjecture Dolbeault cohomology Duality (mathematics) Eigenvalues and eigenvectors Exponential map (Lie theory) Exponential map (Riemannian geometry) Exterior algebra Function space Group homomorphism Harmonic analysis Hecke algebra Hilbert space Hodge theory Holomorphic function Holomorphic vector bundle Homogeneous space Homomorphism Induced representation Infinitesimal character Inner automorphism Invariant subspace Irreducibility (mathematics) Irreducible representation Isometry group Isometry K-finite Kazhdan–Lusztig polynomial Langlands decomposition Lie algebra cohomology Lie algebra representation Lie algebra Lie group action Lie group Mathematical induction Maximal compact subgroup Measure (mathematics) Minkowski space Nilpotent group Orbit method Orthogonal group Parabolic induction Principal homogeneous space Principal series representation Projective space Pseudo-Riemannian manifold Pullback (category theory) Ramanujan–Petersson conjecture Reductive group Regularity theorem Representation of a Lie group Representation theorem Representation theory Riemann sphere Riemannian manifold Schwartz space Semisimple Lie algebra Sheaf (mathematics) Sign (mathematics) Special case Spectral theory Sub"ient Subgroup Support (mathematics) Symplectic geometry Symplectic group Symplectic vector space Tangent space Tautological bundle Theorem Topological group Topological space Trivial representation Unitary group Unitary matrix Unitary representation Universal enveloping algebra Vector bundle Weyl algebra Weyl character formula Weyl group Zariski's main theorem Zonal spherical function |
ISBN | 1-4008-8238-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- CONTENTS -- ACKNOWLEDGEMENTS -- INTRODUCTION -- Chapter 1. COMPACT GROUPS AND THE BOREL-WEIL THEOREM -- Chapter 2. HARISH-CHANDRA MODULES -- Chapter 3. PARABOLIC INDUCTION -- Chapter 4. STEIN COMPLEMENTARY SERIES AND THE UNITARY DUAL OF GL(n,ℂ) -- Chapter 5. COHOMOLOGICAL PARABOLIC INDUCTION: ANALYTIC THEORY -- Chapter 6. COHOMOLOGICAL PARABOLIC INDUCTION: ALGEBRAIC THEORY -- Interlude. THE IDEA OF UNIPOTENT REPRESENTATIONS -- Chapter 7. FINITE GROUPS AND UNIPOTENT REPRESENTATIONS -- Chapter 8. LANGLANDS' PRINCIPLE OF FUNCTORIALITY AND UNIPOTENT REPRESENTATIONS -- Chapter 9. PRIMITIVE IDEALS AND UNIPOTENT REPRESENTATIONS -- Chapter 10. THE ORBIT METHOD AND UNIPOTENT REPRESENTATIONS -- Chapter 11. E-MULTIPLICITIES AND UNIPOTENT REPRESENTATIONS -- Chapter 12. ON THE DEFINITION OF UNIPOTENT REPRESENTATIONS -- Chapter 13. EXHAUSTION -- REFERENCES -- Backmatter |
Record Nr. | UNINA-9910154742103321 |
Vogan David A. | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|