Characteristic Classes. (AM-76), Volume 76 / / John Milnor, James D. Stasheff
| Characteristic Classes. (AM-76), Volume 76 / / John Milnor, James D. Stasheff |
| Autore | Milnor John |
| Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
| Descrizione fisica | 1 online resource (339 pages) : illustrations |
| Disciplina | 514/.7 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico | Characteristic classes |
| Soggetto non controllato |
Additive group
Axiom Basis (linear algebra) Boundary (topology) Bundle map CW complex Canonical map Cap product Cartesian product Characteristic class Charles Ehresmann Chern class Classifying space Coefficient Cohomology ring Cohomology Compact space Complex dimension Complex manifold Complex vector bundle Complexification Computation Conformal geometry Continuous function Coordinate space Cross product De Rham cohomology Diffeomorphism Differentiable manifold Differential form Differential operator Dimension (vector space) Dimension Direct sum Directional derivative Eilenberg–Steenrod axioms Embedding Equivalence class Euler class Euler number Existence theorem Existential quantification Exterior (topology) Fiber bundle Fundamental class Fundamental group General linear group Grassmannian Gysin sequence Hausdorff space Homeomorphism Homology (mathematics) Homotopy Identity element Integer Interior (topology) Isomorphism class J-homomorphism K-theory Leibniz integral rule Levi-Civita connection Limit of a sequence Linear map Metric space Natural number Natural topology Neighbourhood (mathematics) Normal bundle Open set Orthogonal complement Orthogonal group Orthonormal basis Partition of unity Permutation Polynomial Power series Principal ideal domain Projection (mathematics) Representation ring Riemannian manifold Sequence Singular homology Smoothness Special case Steenrod algebra Stiefel–Whitney class Subgroup Subset Symmetric function Tangent bundle Tensor product Theorem Thom space Topological space Topology Unit disk Unit vector Variable (mathematics) Vector bundle Vector space |
| ISBN | 1-4008-8182-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Preface -- Contents -- §1. Smooth Manifolds -- §2. Vector Bundles -- §3. Constructing New Vector Bundles Out of Old -- §4. Stiefel-Whitney Classes -- §5. Grassmann Manifolds and Universal Bundles -- §6. A Cell Structure for Grassmann Manifolds -- §7. The Cohomology Ring H*(Gn; Z/2) -- §8. Existence of Stiefel-Whitney Classes -- §9. Oriented Bundles and the Euler Class -- §10. The Thom Isomorphism Theorem -- §11. Computations in a Smooth Manifold -- §12. Obstructions -- §13. Complex Vector Bundles and Complex Manifolds -- §14. Chern Classes -- §15. Pontrjagin Classes -- §16. Chern Numbers and Pontrjagin Numbers -- §17. The Oriented Cobordism Ring Ω* -- §18. Thom Spaces and Transversality -- §19. Multiplicative Sequences and the Signature Theorem -- §20. Combinatorial Pontrjagin Classes -- Epilogue -- Appendix A: Singular Homology and Cohomology -- Appendix B: Bernoulli Numbers -- Appendix C: Connections, Curvature, and Characteristic Classes -- Bibliography -- Index |
| Record Nr. | UNINA-9910154754803321 |
Milnor John
|
||
| Princeton, NJ : , : Princeton University Press, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Elliptic partial differential equations and quasiconformal mappings in the plane [[electronic resource] /] / Kari Astala, Tadeusz Iwaniec, and Gaven Martin
| Elliptic partial differential equations and quasiconformal mappings in the plane [[electronic resource] /] / Kari Astala, Tadeusz Iwaniec, and Gaven Martin |
| Autore | Astala Kari <1953-> |
| Edizione | [Course Book] |
| Pubbl/distr/stampa | Princeton, : Princeton University Press, c2009 |
| Descrizione fisica | 1 online resource (696 p.) |
| Disciplina | 515/.93 |
| Altri autori (Persone) |
IwaniecTadeusz
MartinGaven |
| Collana | Princeton mathematical series |
| Soggetto topico |
Differential equations, Elliptic
Quasiconformal mappings |
| Soggetto non controllato |
Adjoint equation
Analytic function Analytic proof Banach space Beltrami equation Boundary value problem Bounded mean oscillation Calculus of variations Cantor function Cartesian product Cauchy–Riemann equations Central limit theorem Characterization (mathematics) Complex analysis Complex plane Conformal geometry Conformal map Conjugate variables Continuous function (set theory) Coordinate space Degeneracy (mathematics) Differential equation Directional derivative Dirichlet integral Dirichlet problem Disk (mathematics) Distribution (mathematics) Elliptic operator Elliptic partial differential equation Equation Equations of motion Euler–Lagrange equation Explicit formulae (L-function) Factorization Fourier transform Fubini's theorem Geometric function theory Geometric measure theory Geometry Harmonic conjugate Harmonic function Harmonic map Harmonic measure Hilbert transform Holomorphic function Homeomorphism Hyperbolic geometry Hyperbolic trigonometry Invertible matrix Jacobian matrix and determinant Julia set Lagrangian (field theory) Laplace's equation Limit (mathematics) Linear differential equation Linear equation Linear fractional transformation Linear map Linearization Lipschitz continuity Locally integrable function Lusin's theorem Mathematical optimization Mathematics Maxima and minima Maxwell's equations Measure (mathematics) Metric space Mirror symmetry (string theory) Moduli space Modulus of continuity Monodromy theorem Monotonic function Montel's theorem Operator (physics) Operator theory Partial derivative Partial differential equation Poisson formula Polynomial Quadratic function Quasiconformal mapping Quasiconvex function Quasisymmetric function Renormalization Riemann sphere Riemann surface Riemannian geometry Riesz transform Riesz–Thorin theorem Sign (mathematics) Sobolev space Square-integrable function Support (mathematics) Theorem Two-dimensional space Uniformization theorem Upper half-plane Variable (mathematics) Weyl's lemma (Laplace equation) |
| ISBN |
1-282-15727-2
9786612157271 1-4008-3011-7 |
| Classificazione | SK 560 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter 1. Introduction -- Chapter 2. A Background In Conformal Geometry -- Chapter 3. The Foundations Of Quasiconformal Mappings -- Chapter 4. Complex Potentials -- Chapter 5. The Measurable Riemann Mapping Theorem: The Existence Theory Of Quasiconformal Mappings -- Chapter 6. Parameterizing General Linear Elliptic Systems -- Chapter 7. The Concept Of Ellipticity -- Chapter 8. Solving General Nonlinear First-Order Elliptic Systems -- Chapter 9. Nonlinear Riemann Mapping Theorems -- Chapter 10. Conformal Deformations And Beltrami Systems -- Chapter 11. A Quasilinear Cauchy Problem -- Chapter 12. Holomorphic Motions -- Chapter 13. Higher Integrability -- Chapter 14. Lp-Theory Of Beltrami Operators -- Chapter 15. Schauder Estimates For Beltrami Operators -- Chapter 16. Applications To Partial Differential Equations -- Chapter 17. PDEs Not Of Divergence Type: Pucci'S Conjecture -- Chapter 18. Quasiconformal Methods In Impedance Tomography: Calderón's Problem -- Chapter 19. Integral Estimates For The Jacobian -- Chapter 20. Solving The Beltrami Equation: Degenerate Elliptic Case -- Chapter 21. Aspects Of The Calculus Of Variations -- Appendix: Elements Of Sobolev Theory And Function Spaces -- Basic Notation -- Bibliography -- Index |
| Record Nr. | UNINA-9910778138403321 |
Astala Kari <1953->
|
||
| Princeton, : Princeton University Press, c2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Singular Points of Complex Hypersurfaces. (AM-61), Volume 61 / / John Milnor
| Singular Points of Complex Hypersurfaces. (AM-61), Volume 61 / / John Milnor |
| Autore | Milnor John |
| Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
| Descrizione fisica | 1 online resource (137 pages) : illustrations |
| Disciplina | 516.35 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico | Geometry, Algebraic |
| Soggetto non controllato |
3-sphere
Addition Alexander polynomial Algebraic curve Algebraic equation Algebraic geometry Analytic manifold Apply Approximation Binary icosahedral group Boundary (topology) Characteristic polynomial Codimension Coefficient Commutator subgroup Commutator Compact group Complex analysis Complex number Complex projective plane Conjecture Contradiction Coordinate space Coordinate system Derivative Differentiable manifold Dimension Directional derivative Euclidean space Euler number Exact sequence Existential quantification Exotic sphere Fiber bundle Fibration Field of fractions Finite group Finite set Finitely generated group Formal power series Free abelian group Free group Fundamental group Geometry Hermitian matrix Hessian matrix Homology (mathematics) Homology sphere Homotopy sphere Homotopy Hopf fibration Hypersurface Icosahedron Implicit function theorem Integer Integral domain Inverse function theorem Knot group Knot theory Line segment Linear combination Linear map Manifold Minor (linear algebra) Morse theory N-sphere Neighbourhood (mathematics) Normal (geometry) Normal subgroup Open set Orientability Parametrization Polynomial Prime ideal Principal ideal Projective space Real number Regular icosahedron Retract Riemannian manifold Second derivative Sign (mathematics) Simply connected space Smoothness Special case Submanifold Subset Surjective function Tangent space Theorem Topological manifold Topology Transcendence degree Tubular neighborhood Unit interval Unit sphere Unit vector Variable (mathematics) Vector field Vector space |
| ISBN | 1-4008-8181-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- PREFACE -- CONTENTS -- §1. INTRODUCTION -- §2. ELEMENTARY FACTS ABOUT REAL OR COMPLEX ALGEBRAIC SETS -- §3. THE CURVE SELECTION LEMMA -- §4. THE FIBRATION THEOREM -- §5. THE TOPOLOGY OF THE FIBERAND OF K -- §6. THE CASE OF AN ISOLATED CRITICAL POINT -- §7. THE MIDDLE BETTI NUMBER OF THE FIBER -- §8. IS K A TOPOLOGICAL SPHERE ? -- §9. BRIESKORN VARIETIES AND WEIGHTED HOMOGENEOUS POLYNOMIALS -- § 10. THE CLASSICAL CASE: CURVES IN C2 -- §11. A FIBRATION THEOREM FOR REAL SINGULARITIES -- APPENDIX A. WHITNEY'S FINITENESS THEOREM FOR ALGEBRAIC SETS -- APPENDIX B. THE MULTIPLICITY OF AN ISOLATED SOLUTION OF ANALYTIC EQUATIONS -- BIBLIOGRAPHY |
| Record Nr. | UNINA-9910154743603321 |
Milnor John
|
||
| Princeton, NJ : , : Princeton University Press, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||