Curvature and Betti Numbers. (AM-32), Volume 32 / / Kentaro Yano, Salomon Trust |
Autore | Trust Salomon |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (205 pages) |
Disciplina |
513.7
516.7* |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Curvature
Geometry, Differential |
Soggetto non controllato |
Abelian integral
Affine connection Algebraic operation Almost periodic function Analytic function Arc length Betti number Coefficient Compact space Complex analysis Complex conjugate Complex dimension Complex manifold Conservative vector field Constant curvature Constant function Continuous function Convex set Coordinate system Covariance and contravariance of vectors Covariant derivative Curvature Derivative Differential form Differential geometry Dimension (vector space) Dimension Einstein manifold Equation Euclidean domain Euclidean geometry Euclidean space Existential quantification Geometry Hausdorff space Hypersphere Killing vector field Kähler manifold Lie group Manifold Metric tensor (general relativity) Metric tensor Mixed tensor One-parameter group Orientability Partial derivative Periodic function Permutation Quantity Ricci curvature Riemannian manifold Scalar (physics) Sectional curvature Self-adjoint Special case Subset Summation Symmetric tensor Symmetrization Tensor algebra Tensor calculus Tensor field Tensor Theorem Torsion tensor Two-dimensional space Uniform convergence Uniform space Unit circle Unit sphere Unit vector Vector field |
ISBN | 1-4008-8220-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Preface -- Contents -- Chapter I. Riemannian Manifold -- Chapter II. Harmonic and Killing Vectors -- Chapter III. Harmonic and Killing Tensors -- Chapter IV. Harmonic and Killing Tensors in Flat Manifolds -- Chapter V. Deviation from Flatness -- Chapter VI. Semi-simple Group Spaces -- Chapter VII. Pseudo-harmonic Tensors and Pseudo-Killing Tensors in Metric Manifolds with Torsion -- Chapter VIII. Kaehler Manifold -- Chapter IX. Supplements / Bochner, S. -- Bibliography -- Backmatter |
Record Nr. | UNINA-9910154748603321 |
Trust Salomon
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Harmonic Maps and Minimal Immersions with Symmetries (AM-130), Volume 130 : Methods of Ordinary Differential Equations Applied to Elliptic Variational Problems. (AM-130) / / Andrea Ratto, James Eells |
Autore | Eells James |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (235 pages) : illustrations |
Disciplina | 514/.7 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Harmonic maps
Immersions (Mathematics) Differential equations, Elliptic - Numerical solutions |
Soggetto non controllato |
Arc length
Catenary Clifford algebra Codimension Coefficient Compact space Complex projective space Connected sum Constant curvature Corollary Covariant derivative Curvature Cylinder (geometry) Degeneracy (mathematics) Diagram (category theory) Differential equation Differential geometry Elliptic partial differential equation Embedding Energy functional Equation Existence theorem Existential quantification Fiber bundle Gauss map Geometry and topology Geometry Gravitational field Harmonic map Hyperbola Hyperplane Hypersphere Hypersurface Integer Iterative method Levi-Civita connection Lie group Mathematics Maximum principle Mean curvature Normal (geometry) Numerical analysis Open set Ordinary differential equation Parabola Quadratic form Sign (mathematics) Special case Stiefel manifold Submanifold Suggestion Surface of revolution Symmetry Tangent bundle Theorem Vector bundle Vector space Vertical tangent Winding number |
ISBN | 1-4008-8250-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- INTRODUCTION -- TABLE OF CONTENTS -- PART 1. BASIC VARIATIONAL AND GEOMETRICAL PROPERTIES -- PART 2. G-INVARIANT MINIMAL AND CONSTANT MEAN CURVATURE IMMERSIONS -- PART 3. HARMONIC MAPS BETWEEN SPHERES -- APPENDIX 1. SECOND VARIATIONS -- APPENDIX 2. RIEMANNIAN IMMERSIONS Sm → Sn -- APPENDIX 3. MINIMAL GRAPHS AND PENDENT DROPS -- APPENDIX 4. FURTHER ASPECTS OF PENDULUM TYPE EQUATIONS -- REFERENCES -- INDEX |
Record Nr. | UNINA-9910154754703321 |
Eells James
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Metric Methods of Finsler Spaces and in the Foundations of Geometry. (AM-8) / / Herbert Busemann |
Autore | Busemann Herbert |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (252 pages) : illustrations |
Disciplina | 516 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Generalized spaces
Geometry - Foundations |
Soggetto non controllato |
Abelian group
Absolute geometry Affine transformation Approximation Arc length Archimedean property Asymptote Axiom A. Axiom Axiomatic system Bernhard Riemann C0 Cartesian coordinate system Closed geodesic Collinearity Compact space Conjecture Conjugate points Constant curvature Convex body Convex curve Convex function Convex hull Convex metric space Convex polygon Convex set Coordinate system Counterexample Covariance and contravariance of vectors Curvature Diameter Differentiable function Dimension (vector space) Dimension Dimensional analysis Elementary proof Ellipse Ellipsoid Elliptic geometry Equation Equidistant Euclidean distance Euclidean geometry Euclidean space Exterior (topology) Geodesic Geodesy Geometry Group theory Hilbert geometry Hilbert space Homogeneous space Homotopy Hyperbola Hyperbolic geometry Hyperbolic motion Hyperplane Infimum and supremum Infinitesimal Intersection (set theory) Invariance theorem Jordan curve theorem Limit point Line at infinity Linear space (geometry) Linear subspace Linearity Metric space Minkowski space Non-Euclidean geometry Non-positive curvature Notation Open problem Parity (mathematics) Perpendicular Pointwise Projective geometry Projective plane Requirement Riemannian geometry Sequence Sign (mathematics) Simply connected space Special case Subgroup Subsequence Subset Tangent cone Tangent space Theorem Theory Three-dimensional space (mathematics) Topological group Topological space Topology Transitive relation Triangle inequality Two-dimensional space Unit circle Unit vector |
ISBN | 1-4008-8229-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Preface -- Table of Contents -- Chapter I. Metric Spaces with Geodesics -- Chapter II. Metric Conditions for Finsler Spaces -- Chapter III. Properties of General S. L. Spaces -- Chapter IV. Spaces with Convex Spheres -- Chapter V. Motions -- Bibliography -- Index |
Record Nr. | UNINA-9910154744003321 |
Busemann Herbert
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Radon transforms and the rigidity of the Grassmannians [[electronic resource] /] / Jacques Gasqui and Hubert Goldschmidt |
Autore | Gasqui Jacques |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, N.J., : Princeton University Press, 2004 |
Descrizione fisica | 1 online resource (385 p.) |
Disciplina | 515/.723 |
Altri autori (Persone) | GoldschmidtHubert <1942-> |
Collana | Annals of mathematics studies |
Soggetto topico |
Radon transforms
Grassmann manifolds |
Soggetto non controllato |
Adjoint
Automorphism Cartan decomposition Cartan subalgebra Casimir element Closed geodesic Cohomology Commutative property Complex manifold Complex number Complex projective plane Complex projective space Complex vector bundle Complexification Computation Constant curvature Coset Covering space Curvature Determinant Diagram (category theory) Diffeomorphism Differential form Differential geometry Differential operator Dimension (vector space) Dot product Eigenvalues and eigenvectors Einstein manifold Elliptic operator Endomorphism Equivalence class Even and odd functions Exactness Existential quantification G-module Geometry Grassmannian Harmonic analysis Hermitian symmetric space Hodge dual Homogeneous space Identity element Implicit function Injective function Integer Integral Isometry Killing form Killing vector field Lemma (mathematics) Lie algebra Lie derivative Line bundle Mathematical induction Morphism Open set Orthogonal complement Orthonormal basis Orthonormality Parity (mathematics) Partial differential equation Projection (linear algebra) Projective space Quadric Quaternionic projective space Quotient space (topology) Radon transform Real number Real projective plane Real projective space Real structure Remainder Restriction (mathematics) Riemann curvature tensor Riemann sphere Riemannian manifold Rigidity (mathematics) Scalar curvature Second fundamental form Simple Lie group Standard basis Stokes' theorem Subgroup Submanifold Symmetric space Tangent bundle Tangent space Tangent vector Tensor Theorem Topological group Torus Unit vector Unitary group Vector bundle Vector field Vector space X-ray transform Zero of a function |
ISBN |
1-282-15898-8
9786612158988 1-4008-2617-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- Chapter I. Symmetric Spaces and Einstein Manifolds -- Chapter II. Radon Transforms on Symmetric Spaces -- Chapter III. Symmetric Spaces of Rank One -- Chapter IV. The Real Grassmannians -- Chapter V. The Complex Quadric -- Chapter VI. The Rigidity of the Complex Quadric -- Chapter VII. The Rigidity of the Real Grassmannians -- Chapter VIII. The Complex Grassmannians -- Chapter IX. The Rigidity of the Complex Grassmannians -- Chapter X. Products of Symmetric Spaces -- References -- Index |
Record Nr. | UNINA-9910778216403321 |
Gasqui Jacques
![]() |
||
Princeton, N.J., : Princeton University Press, 2004 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78 / / G. Daniel Mostow |
Autore | Mostow G. Daniel |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (205 pages) |
Disciplina | 516/.36 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Riemannian manifolds
Symmetric spaces Lie groups Rigidity (Geometry) |
Soggetto non controllato |
Addition
Adjoint representation Affine space Approximation Automorphism Axiom Big O notation Boundary value problem Cohomology Compact Riemann surface Compact space Conjecture Constant curvature Corollary Counterexample Covering group Covering space Curvature Diameter Diffeomorphism Differentiable function Dimension Direct product Division algebra Ergodicity Erlangen program Existence theorem Exponential function Finitely generated group Fundamental domain Fundamental group Geometry Half-space (geometry) Hausdorff distance Hermitian matrix Homeomorphism Homomorphism Hyperplane Identity matrix Inner automorphism Isometry group Jordan algebra Matrix multiplication Metric space Morphism Möbius transformation Normal subgroup Normalizing constant Partially ordered set Permutation Projective space Riemann surface Riemannian geometry Sectional curvature Self-adjoint Set function Smoothness Stereographic projection Subgroup Subset Summation Symmetric space Tangent space Tangent vector Theorem Topology Tubular neighborhood Two-dimensional space Unit sphere Vector group Weyl group |
ISBN | 1-4008-8183-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- §1. Introduction -- §2. Algebraic Preliminaries -- §3. The Geometry of χ : Preliminaries -- §4. A Metric Definition of the Maximal Boundary -- §5. Polar Parts -- §6. A Basic Inequality -- §7. Geometry of Neighboring Flats -- §8. Density Properties of Discrete Subgroups -- §8. Density Properties of Discrete Subgroups -- § 10. Pseudo Isometries of Simply Connected Spaces with Negative Curvature -- §11. Polar Regular Elements in Co-Compact Γ -- § 12. Pseudo-Isometric Invariance of Semi-Simple and Unipotent Elements -- §13. The Basic Approximation -- §14. The Map ∅̅ -- §15. The Boundary Map ∅0 -- §16. Tits Geometries -- §17. Rigidity for R-rank > 1 -- §18. The Restriction to Simple Groups -- §19. Spaces of R-rank 1 -- §20. The Boundary Semi-Metric -- §21. Quasi-Conformal Mappings Over K and Absolute Continuity on Almost All R-Circles -- §22. The Effect of Ergodicity -- §23. R-Rank 1 Rigidity Proof Concluded -- §24. Concluding Remarks -- Bibliography -- Backmatter |
Record Nr. | UNINA-9910154743303321 |
Mostow G. Daniel
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|