Arithmetic Moduli of Elliptic Curves. (AM-108), Volume 108 / / Barry Mazur, Nicholas M. Katz |
Autore | Katz Nicholas M. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (532 pages) : illustrations |
Disciplina | 516.3/5 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Curves, Elliptic
Moduli theory Geometry, Algebraic |
Soggetto non controllato |
Abelian variety
Addition Algebraic variety Algebraically closed field Ambient space Arithmetic Axiom Barry Mazur Base change Calculation Canonical map Change of base Closed immersion Coefficient Coherent sheaf Cokernel Commutative property Congruence relation Coprime integers Corollary Cusp form Cyclic group Dense set Diagram (category theory) Dimension Discrete valuation ring Disjoint union Divisor Eigenfunction Elliptic curve Empty set Factorization Field of fractions Finite field Finite group Finite morphism Free module Functor Group (mathematics) Integer Irreducible component Level structure Local ring Maximal ideal Modular curve Modular equation Modular form Moduli space Morphism of schemes Morphism Neighbourhood (mathematics) Noetherian One-parameter group Open problem Prime factor Prime number Prime power Q.E.D. Regularity theorem Representation theory Residue field Riemann hypothesis Smoothness Special case Subgroup Subring Subset Theorem Topology Two-dimensional space Zariski topology |
ISBN | 1-4008-8171-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- Chapter 1. GENERALITIES ON " A-STRUCTURES" AND " A-GENERATORS" -- Chapter 2. REVIEW OF ELLIPTIC CURVES -- Chapter 3. THE FOUR BASIC MODULI PROBLEMS FOR ELLIPTIC CURVES: SORITES -- Chapter 4. THE FORMALISM OF MODULI PROBLEMS -- Chapter 5. REGULARITY THEOREMS -- Chapter 6. CYCLICITY -- Chapter 7. QUOTIENTS BY FINITE GROUPS -- Chapter 8. COARSE MODULI SCHEMES, CUSPS, AND COMPACTIFICATION -- Chapter 9. MODULI PROBLEMS VIEWED OVER CYCLOTOMIC INTEGER RINGS -- Chapter 10. THE CALCULUS OF CUSPS AND COMPONENTS VIA THE GROUPS T[N], AND THE GLOBAL STRUCTURE OF THE BASIC MODULI PROBLEMS -- Chapter 11. INTERLUDE-EXOTIC MODULAR MORPHISMS AND ISOMORPHISMS -- Chapter 12. NEW MODULI PROBLEMS IN CHARACTERISTIC p; IGUSA CURVES -- Chapter 13. REDUCTIONS mod p OF THE BASIC MODULI PROBLEMS -- Chapter 14. APPLICATION TO THEOREMS OF GOOD REDUCTION -- NOTES ADDED IN PROOF -- REFERENCES |
Record Nr. | UNINA-9910154753303321 |
Katz Nicholas M.
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Finite Dimensional Vector Spaces. (AM-7), Volume 7 / / Paul R. Halmos |
Autore | Halmos Paul R (Paul Richard), <1916-2006, > |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (206 pages) |
Disciplina | 512.52 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Transformations (Mathematics)
Generalized spaces |
Soggetto non controllato |
Absolute value
Accuracy and precision Addition Affine space Algebraic closure Algebraic equation Algebraic operation Algebraically closed field Associative property Automorphism Axiom Banach space Basis (linear algebra) Bilinear form Bounded operator Cardinal number Cayley transform Characteristic equation Characterization (mathematics) Coefficient Commutative property Complex number Complex plane Computation Congruence relation Convex set Coordinate system Determinant Diagonal matrix Dimension (vector space) Dimension Dimensional analysis Direct product Direct proof Direct sum Division by zero Dot product Dual basis Eigenvalues and eigenvectors Elementary proof Equation Euclidean space Existential quantification Function of a real variable Functional calculus Fundamental theorem Geometry Gram–Schmidt process Hermitian matrix Hilbert space Infimum and supremum Jordan normal form Lebesgue integration Linear combination Linear function Linear independence Linear map Linear programming Linearity Manifold Mathematical induction Mathematics Minimal polynomial (field theory) Minor (linear algebra) Monomial Multiplication sign Natural number Nilpotent Normal matrix Normal operator Number theory Orthogonal basis Orthogonal complement Orthogonal coordinates Orthogonality Orthonormality Polynomial Quotient space (linear algebra) Quotient space (topology) Real number Real variable Scalar (physics) Scientific notation Series (mathematics) Set (mathematics) Sign (mathematics) Special case Spectral theorem Spectral theory Summation Tensor calculus Theorem Topology Transitive relation Unbounded operator Uncountable set Unit sphere Unitary transformation Variable (mathematics) Vector space |
ISBN | 1-4008-8223-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | PREFACE -- TABLE OP CONTENTS -- ERRATA -- Chapter I. SPACES -- Chapter II. TRANSFORMATIONS -- Chapter III. ORTHOGONALITY -- APPENDIX I. THE CLASSICAL CANONICAL FORM -- APPENDIX II. DIRECT PRODUCTS -- APPENDIX III. HILBERT SPACE -- BIBLIOGRAPHY -- LIST OF NOTATIONS -- INDEX OF DEFINITIONS |
Record Nr. | UNINA-9910154744503321 |
Halmos Paul R (Paul Richard), <1916-2006, >
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|