27. International Meshing Roundtable / Xevi Roca, Adrien Loseille editors |
Pubbl/distr/stampa | Cham, : Springer, 2019 |
Descrizione fisica | ix, 479 p. : ill. ; 24 cm |
Soggetto topico |
65M50 - Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs [MSC 2020]
97N40 - Numerical analysis (educational aspects) [MSC 2020] 97N80 - Mathematical software, computer programs (educational aspects) [MSC 2020] |
Soggetto non controllato |
CAD
Computer Graphics Finite Element Simulation Geometry processing Mesh adaptation Mesh generation Parallel computing |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0126623 |
Cham, : Springer, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
27. International Meshing Roundtable / Xevi Roca, Adrien Loseille editors |
Pubbl/distr/stampa | Cham, : Springer, 2019 |
Descrizione fisica | ix, 479 p. : ill. ; 24 cm |
Soggetto topico |
65M50 - Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs [MSC 2020]
97N40 - Numerical analysis (educational aspects) [MSC 2020] 97N80 - Mathematical software, computer programs (educational aspects) [MSC 2020] |
Soggetto non controllato |
CAD
Computer Graphics Finite Element Simulation Geometry processing Mesh adaptation Mesh generation Parallel computing |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00126623 |
Cham, : Springer, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Forging connections between computational mathematics and computational geometry : papers from the 3. international conference on computational mathematics and computational geometry / Ke Chen editor, Anton Ravindran managing editor |
Pubbl/distr/stampa | Cham, : Springer, 2016 |
Descrizione fisica | XV, 300 p. : ill. ; 24 cm |
Soggetto topico |
65-XX - Numerical analysis [MSC 2020]
00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020] 68U05 - Computer graphics; computational geometry (digital and algorithmic aspects) [MSC 2020] 65Zxx - Applications to the sciences [MSC 2020] 65D18 - Numerical aspects of computer graphics, image analysis, and computational geometry [MSC 2020] |
Soggetto non controllato |
Applied Mathematics
Computational geometry Computer Graphics Graphics for Mathematics Numerical algorithms Regression Modeling |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0114774 |
Cham, : Springer, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Forging connections between computational mathematics and computational geometry : papers from the 3. international conference on computational mathematics and computational geometry / Ke Chen editor, Anton Ravindran managing editor |
Pubbl/distr/stampa | Cham, : Springer, 2016 |
Descrizione fisica | XV, 300 p. : ill. ; 24 cm |
Soggetto topico |
00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020]
65-XX - Numerical analysis [MSC 2020] 65D18 - Numerical aspects of computer graphics, image analysis, and computational geometry [MSC 2020] 65Zxx - Applications to the sciences [MSC 2020] 68U05 - Computer graphics; computational geometry (digital and algorithmic aspects) [MSC 2020] |
Soggetto non controllato |
Applied Mathematics
Computational geometry Computer Graphics Graphics for Mathematics Numerical algorithms Regression Modeling |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00114774 |
Cham, : Springer, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Imagine Math 3 : between culture and mathematics / Michele Emmer editor |
Pubbl/distr/stampa | [Cham], : Springer, 2015 |
Descrizione fisica | X, 330 p. : ill. ; 24 cm |
Soggetto topico |
00A66 - Mathematics and visual arts [MSC 2020]
00A67 - Mathematics and architecture [MSC 2020] |
Soggetto non controllato |
Computer Graphics
Mathematics and Architecture Mathematics and Art Mathematics and Cinema Mathematics and Culture |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0113220 |
[Cham], : Springer, 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Imagine Math 3 : between culture and mathematics / Michele Emmer editor |
Pubbl/distr/stampa | [Cham], : Springer, 2015 |
Descrizione fisica | X, 330 p. : ill. ; 24 cm |
Soggetto topico |
00A66 - Mathematics and visual arts [MSC 2020]
00A67 - Mathematics and architecture [MSC 2020] |
Soggetto non controllato |
Computer Graphics
Mathematics and Architecture Mathematics and Art Mathematics and Cinema Mathematics and Culture |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00113220 |
[Cham], : Springer, 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Imagine Math 6 : between culture and mathematics / Michele Emmer, Marco Abate editors |
Pubbl/distr/stampa | Cham, : Springer, 2018 |
Descrizione fisica | xiii, 327 p. : ill. ; 24 cm |
Soggetto topico |
00B15 - Collections of articles of miscellaneous specific interest [MSC 2020]
00Axx - General and miscellaneous specific topics [MSC 2020] 00A66 - Mathematics and visual arts [MSC 2020] 00A67 - Mathematics and architecture [MSC 2020] |
Soggetto non controllato |
Applications of mathematics
Art Cinema Computer Graphics Medicine Music |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0124762 |
Cham, : Springer, 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Imagine Math 6 : between culture and mathematics / Michele Emmer, Marco Abate editors |
Pubbl/distr/stampa | Cham, : Springer, 2018 |
Descrizione fisica | xiii, 327 p. : ill. ; 24 cm |
Soggetto topico |
00A66 - Mathematics and visual arts [MSC 2020]
00A67 - Mathematics and architecture [MSC 2020] 00Axx - General and miscellaneous specific topics [MSC 2020] 00B15 - Collections of articles of miscellaneous specific interest [MSC 2020] |
Soggetto non controllato |
Applications of mathematics
Art Cinema Computer Graphics Medicine Music |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00124762 |
Cham, : Springer, 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Intelligent Information and Database Systems : 14th Asian Conference, ACIIDS 2022, Ho Chi Minh City, Vietnam, November 28-30, 2022, Proceedings, Part II |
Autore | Nguyen Ngoc Thanh |
Pubbl/distr/stampa | Cham : , : Springer, , 2023 |
Descrizione fisica | 1 online resource (766 pages) |
Disciplina | 006.3 |
Altri autori (Persone) |
TranTien Khoa
TukayevUalsher HongTzung-Pei TrawińskiBogdan SzczerbickiEdward |
Collana | Lecture Notes in Computer Science |
Soggetto non controllato |
Information Technology
Computer Graphics Data Mining Artificial Intelligence Computers |
ISBN | 3-031-21967-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part II -- Contents - Part I -- Machine Learning and Data Mining -- Machine Learning or Lexicon Based Sentiment Analysis Techniques on Social Media Posts -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Comparison Between Sentiment Analysis Methods -- 4 Results and Discussion -- 5 Conclusion -- References -- A Comparative Study of Classification and Clustering Methods from Text of Books -- 1 Introduction -- 2 Related Works -- 3 Project Gutenberg -- 4 Natural Language Processing -- 4.1 Word Weighting Measures -- 5 Machine Learning Methods -- 5.1 Algorithms for Classification -- 5.2 Algorithm for Clustering -- 5.3 Measures of the Quality -- 6 Proposed Approach -- 7 Experiments -- 7.1 Experimental Design and Data Set -- 7.2 Results of Experiments -- 8 Conclusions -- References -- A Lightweight and Efficient GA-Based Model-Agnostic Feature Selection Scheme for Time Series Forecasting -- 1 Introduction -- 2 Related Works -- 2.1 Feature Selection Methods -- 2.2 GA-Based Feature Selection -- 3 GA-Based Model-Agnostic Feature Selection -- 3.1 Problem Formulation -- 3.2 Overview -- 3.3 GA-Based Feature Selector -- 3.4 Training Data Generator -- 4 Performance Evaluation -- 4.1 Evaluation Settings -- 4.2 Impact of GA-Based Feature Selector -- 4.3 Impact of Training Data Generator -- 5 Conclusion -- References -- Machine Learning Approach to Predict Metastasis in Lung Cancer Based on Radiomic Features -- 1 Background -- 2 Materials and Methods -- 2.1 Data -- 2.2 Radiomics Features -- 2.3 Classification Workflow -- 3 Feature Selection Challenges -- 3.1 Multiple ROIs from the Same Patient -- 3.2 Response Variable Type -- 3.3 Small Differences Between Classes -- 4 Results -- 5 Discussion and Future Work -- References -- Covariance Controlled Bayesian Rose Trees -- 1 Introduction -- 2 Algorithm.
2.1 Hierarchical Clustering -- 2.2 Bayesian Rose Trees -- 2.3 Constraining BRT Hierarchies -- 2.4 Parameterisation -- 2.5 Depth Level as a Function of the Likelihood -- 2.6 Hierarchy Outside of Defined Clusters -- 3 Method Comparison -- 4 Conclusions -- References -- Potential of Radiomics Features for Predicting Time to Metastasis in NSCLC -- 1 Background -- 2 Materials and Methods -- 2.1 Data -- 2.2 Radiomics Features -- 2.3 Data Pre-processing and Unsupervised Analysis -- 2.4 Modeling of Metastasis Free Survival -- 3 Results -- 4 Discussion and Future Work -- References -- A Survey of Network Features for Machine Learning Algorithms to Detect Network Attacks -- 1 Introduction -- 2 Background Study -- 3 Literature Survey -- 4 Shortcoming of Existing Literature -- 5 Recommendations -- References -- The Quality of Clustering Data Containing Outliers -- 1 Introduction -- 1.1 The Structure of the Paper -- 2 State of Art -- 3 Clustering Data Containing Outliers -- 3.1 Clustering Algorithms: Hierarchical AHC vs Partitional K-Means -- 3.2 Clustering Quality Indices -- 3.3 Outlier Definition -- 3.4 Outlier Detection Algorithms -- 4 Experiments -- 4.1 Data Description -- 4.2 Methodology -- 4.3 Experimental Environment -- 4.4 Results -- 4.5 Discussion -- 5 Summary -- References -- Aggregated Performance Measures for Multi-class Classification -- 1 Introduction -- 2 Method -- 2.1 Classification of a Single Data Point -- 2.2 Aggregation Over Classes and Thresholds -- 2.3 Normalisation -- 2.4 The Case of Specificity -- 2.5 The Compound Measure of Accuracy -- 3 Discussion -- References -- Prediction of Lung Cancer Survival Based on Multiomic Data -- 1 Introduction -- 2 Materials and Methods -- 2.1 Data Used in the Study -- 2.2 Feature Definition and Pre-selection -- 2.3 Variable Importance Study -- 2.4 Classification of Data -- 3 Results. 3.1 Aggregation and Dimensionality Reduction -- 3.2 Predictive Potential of Various -Omics Datasets -- 3.3 Variable Importance Study in a Multiomic Dataset -- 4 Discussion -- References -- Graph Neural Networks-Based Multilabel Classification of Citation Network -- 1 Introduction -- 2 Related Works -- 3 Dataset Description -- 4 Experiments -- 5 Multilabel Classification Approach -- 6 Conclusion and Future Works -- References -- Towards Efficient Discovery of Partial Periodic Patterns in Columnar Temporal Databases -- 1 Introduction -- 2 Related Work -- 3 The Model of Partial Periodic Pattern -- 4 Proposed Algorithm -- 4.1 3P-ECLAT Algorithm -- 5 Experimental Results -- 5.1 Evaluation of Algorithms by Varying minPS -- 5.2 Evaluation of Algorithms by Varying Per -- 5.3 Scalability Test -- 5.4 A Case Study: Finding Areas Where People Have Been Regularly Exposed to Hazardous Levels of PM2.5 Pollutant -- 6 Conclusions and Future Work -- References -- Avoiding Time Series Prediction Disbelief with Ensemble Classifiers in Multi-class Problem Spaces -- 1 Introduction -- 2 Time Series Analysis Life-Cycle -- 3 Prediction Disbelief in Acceptance Tests of Forecasting Models -- 4 Discussion -- 5 Conclusions -- References -- Speeding Up Recommender Systems Using Association Rules -- 1 Introduction -- 2 Preliminaries -- 2.1 Factorization Machines -- 2.2 Association Rules -- 2.3 Related Works -- 3 FMAR Recommender System -- 3.1 Problem Definition -- 3.2 Factorization Machine Apriori Based Model -- 3.3 Factorization Machine FP-Growth Based Model -- 4 Evaluation for FMAR -- 4.1 Performance Comparison and Analysis -- 5 Conclusions and Future Work -- References -- An Empirical Experiment on Feature Extractions Based for Speech Emotion Recognition -- 1 Introduction -- 2 Literature Review -- 3 Dataset -- 4 Feature Extraction -- 5 Methodology -- 5.1 Input Preparation. 5.2 Classification Models -- 6 Experimental Results -- 7 Conclusion and Discussion -- References -- Parameter Distribution Ensemble Learning for Sudden Concept Drift Detection -- 1 Introduction -- 2 Methods -- 2.1 BO-ERICS Phase -- 2.2 Ensemble Phase -- 3 Experiments and Discussion -- 3.1 Datasets -- 3.2 Evaluation -- 3.3 Results -- 3.4 Discussion -- 4 Conclusions -- References -- MLP-Mixer Approach for Corn Leaf Diseases Classification -- 1 Introduction -- 2 Related Work -- 2.1 Literature Review -- 2.2 MLP-Mixer -- 2.3 Deep Learning -- 3 Methods -- 3.1 Data Requirements, Collection and Preparation -- 3.2 Configure the Hyperparameters -- 3.3 Build a Classification Model -- 3.4 Define an Experiment and Data Augmentation -- 3.5 The MLP-Mixer Model Structure -- 3.6 Build, Train, and Evaluate the MLP-Mixer Model -- 4 Experiment and Result -- 4.1 Image Segmentation -- 4.2 Experiment Results (Train and Evaluate Model) -- 4.3 Discussion -- 5 Conclusion -- References -- A Novel Neural Network Training Method for Autonomous Driving Using Semi-Pseudo-Labels and 3D Data Augmentations -- 1 Introduction -- 2 Related Work -- 3 A Novel Training Method with Semi-Pseudo-Labeling and 3D Augmentations -- 3.1 Semi-Pseudo-Labeling -- 3.2 3D Augmentations -- 3.3 An Example of Training with Semi-Pseudo-Labeling and 3D Augmentations -- 4 Experiments -- 4.1 Argoverse -- 4.2 In-House Highway Dataset -- 5 Conclusion -- References -- Machine Learning Methods for BIM Data -- 1 Introduction -- 2 BIM Data - IFC Files -- 3 Machine Learning Techniques for BIM -- 3.1 Learning Semantic Information - Space Classification -- 3.2 Semantic Enrichment of BIM Models from Point Clouds -- 3.3 Building Condition Diagnosis -- 3.4 BIM Enhancement in the Facility Management Context -- 3.5 Knowledge Extraction from BIM -- 4 Conclusions -- References. Self-Optimizing Neural Network in Classification of Real Valued Experimental Data -- 1 Introduction -- 2 Self Optimizing Neural Network -- 2.1 SONN Formalism -- 2.2 Fundamental Coefficient of Discrimination -- 2.3 Structure of the Network and the Weight Factor -- 2.4 Network Response -- 3 Experiment and Results -- 3.1 Dataset -- 3.2 Data Preparation -- 3.3 Classification -- 4 Conclusion -- References -- Analyzing the Effectiveness of the Gaussian Mixture Model Clustering Algorithm in Software Enhancement Effort Estimation -- 1 Introduction -- 2 Backgrounds -- 2.1 The FPA Overview -- 2.2 The Gaussian Mixture Model Clustering Algorithm -- 2.3 The k-means Clustering Algorithm -- 3 Research Methodology -- 3.1 Dataset Pre-processing -- 3.2 Determine the Number of Clusters -- 3.3 Evaluation Criteria -- 4 Results and Discussions -- 5 Conclusion -- References -- Graph Classification via Graph Structure Learning -- 1 Introduction -- 2 Related Works -- 3 Proposed Method: GC-GSL -- 3.1 Extracting Topological Attribute Vector -- 3.2 Rooted Subgraph Mining -- 3.3 Neural Network Graph Embedding -- 3.4 Computational Complexity -- 4 Experiments -- 4.1 Results -- 4.2 Discussions -- 5 Conclusion -- References -- Relearning Ensemble Selection Based on New Generated Features -- 1 Introduction -- 2 Related Works -- 3 The Proposed Framework -- 3.1 Generation of Diverse Base Classifiers -- 3.2 Relearning Base Classifiers -- 3.3 Feature Generation Based on Learned and Relearned Base Classifiers -- 3.4 Learning Second-Level Base Classifier Based on New Vector of the Features -- 3.5 Selection Base Classifiers Based on Second-Level Classification Result -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Results -- 5 Discussion -- 6 Conclusions -- References -- Random Forest in Whitelist-Based ATM Security -- 1 Introduction -- 2 Related Work -- 3 Test Procedure. 4 Data Pre-processing. |
Record Nr. | UNISA-996503470803316 |
Nguyen Ngoc Thanh | ||
Cham : , : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Intelligent Information and Database Systems : 14th Asian Conference, ACIIDS 2022, Ho Chi Minh City, Vietnam, November 28-30, 2022, Proceedings, Part II |
Autore | Nguyen Ngoc Thanh (Computer scientist) |
Pubbl/distr/stampa | Cham : , : Springer, , 2023 |
Descrizione fisica | 1 online resource (766 pages) |
Disciplina | 006.3 |
Altri autori (Persone) |
TranTien Khoa
TukayevUalsher HongTzung-Pei TrawińskiBogdan SzczerbickiEdward |
Collana | Lecture Notes in Computer Science |
Soggetto non controllato |
Information Technology
Computer Graphics Data Mining Artificial Intelligence Computers |
ISBN | 3-031-21967-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents - Part II -- Contents - Part I -- Machine Learning and Data Mining -- Machine Learning or Lexicon Based Sentiment Analysis Techniques on Social Media Posts -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Comparison Between Sentiment Analysis Methods -- 4 Results and Discussion -- 5 Conclusion -- References -- A Comparative Study of Classification and Clustering Methods from Text of Books -- 1 Introduction -- 2 Related Works -- 3 Project Gutenberg -- 4 Natural Language Processing -- 4.1 Word Weighting Measures -- 5 Machine Learning Methods -- 5.1 Algorithms for Classification -- 5.2 Algorithm for Clustering -- 5.3 Measures of the Quality -- 6 Proposed Approach -- 7 Experiments -- 7.1 Experimental Design and Data Set -- 7.2 Results of Experiments -- 8 Conclusions -- References -- A Lightweight and Efficient GA-Based Model-Agnostic Feature Selection Scheme for Time Series Forecasting -- 1 Introduction -- 2 Related Works -- 2.1 Feature Selection Methods -- 2.2 GA-Based Feature Selection -- 3 GA-Based Model-Agnostic Feature Selection -- 3.1 Problem Formulation -- 3.2 Overview -- 3.3 GA-Based Feature Selector -- 3.4 Training Data Generator -- 4 Performance Evaluation -- 4.1 Evaluation Settings -- 4.2 Impact of GA-Based Feature Selector -- 4.3 Impact of Training Data Generator -- 5 Conclusion -- References -- Machine Learning Approach to Predict Metastasis in Lung Cancer Based on Radiomic Features -- 1 Background -- 2 Materials and Methods -- 2.1 Data -- 2.2 Radiomics Features -- 2.3 Classification Workflow -- 3 Feature Selection Challenges -- 3.1 Multiple ROIs from the Same Patient -- 3.2 Response Variable Type -- 3.3 Small Differences Between Classes -- 4 Results -- 5 Discussion and Future Work -- References -- Covariance Controlled Bayesian Rose Trees -- 1 Introduction -- 2 Algorithm.
2.1 Hierarchical Clustering -- 2.2 Bayesian Rose Trees -- 2.3 Constraining BRT Hierarchies -- 2.4 Parameterisation -- 2.5 Depth Level as a Function of the Likelihood -- 2.6 Hierarchy Outside of Defined Clusters -- 3 Method Comparison -- 4 Conclusions -- References -- Potential of Radiomics Features for Predicting Time to Metastasis in NSCLC -- 1 Background -- 2 Materials and Methods -- 2.1 Data -- 2.2 Radiomics Features -- 2.3 Data Pre-processing and Unsupervised Analysis -- 2.4 Modeling of Metastasis Free Survival -- 3 Results -- 4 Discussion and Future Work -- References -- A Survey of Network Features for Machine Learning Algorithms to Detect Network Attacks -- 1 Introduction -- 2 Background Study -- 3 Literature Survey -- 4 Shortcoming of Existing Literature -- 5 Recommendations -- References -- The Quality of Clustering Data Containing Outliers -- 1 Introduction -- 1.1 The Structure of the Paper -- 2 State of Art -- 3 Clustering Data Containing Outliers -- 3.1 Clustering Algorithms: Hierarchical AHC vs Partitional K-Means -- 3.2 Clustering Quality Indices -- 3.3 Outlier Definition -- 3.4 Outlier Detection Algorithms -- 4 Experiments -- 4.1 Data Description -- 4.2 Methodology -- 4.3 Experimental Environment -- 4.4 Results -- 4.5 Discussion -- 5 Summary -- References -- Aggregated Performance Measures for Multi-class Classification -- 1 Introduction -- 2 Method -- 2.1 Classification of a Single Data Point -- 2.2 Aggregation Over Classes and Thresholds -- 2.3 Normalisation -- 2.4 The Case of Specificity -- 2.5 The Compound Measure of Accuracy -- 3 Discussion -- References -- Prediction of Lung Cancer Survival Based on Multiomic Data -- 1 Introduction -- 2 Materials and Methods -- 2.1 Data Used in the Study -- 2.2 Feature Definition and Pre-selection -- 2.3 Variable Importance Study -- 2.4 Classification of Data -- 3 Results. 3.1 Aggregation and Dimensionality Reduction -- 3.2 Predictive Potential of Various -Omics Datasets -- 3.3 Variable Importance Study in a Multiomic Dataset -- 4 Discussion -- References -- Graph Neural Networks-Based Multilabel Classification of Citation Network -- 1 Introduction -- 2 Related Works -- 3 Dataset Description -- 4 Experiments -- 5 Multilabel Classification Approach -- 6 Conclusion and Future Works -- References -- Towards Efficient Discovery of Partial Periodic Patterns in Columnar Temporal Databases -- 1 Introduction -- 2 Related Work -- 3 The Model of Partial Periodic Pattern -- 4 Proposed Algorithm -- 4.1 3P-ECLAT Algorithm -- 5 Experimental Results -- 5.1 Evaluation of Algorithms by Varying minPS -- 5.2 Evaluation of Algorithms by Varying Per -- 5.3 Scalability Test -- 5.4 A Case Study: Finding Areas Where People Have Been Regularly Exposed to Hazardous Levels of PM2.5 Pollutant -- 6 Conclusions and Future Work -- References -- Avoiding Time Series Prediction Disbelief with Ensemble Classifiers in Multi-class Problem Spaces -- 1 Introduction -- 2 Time Series Analysis Life-Cycle -- 3 Prediction Disbelief in Acceptance Tests of Forecasting Models -- 4 Discussion -- 5 Conclusions -- References -- Speeding Up Recommender Systems Using Association Rules -- 1 Introduction -- 2 Preliminaries -- 2.1 Factorization Machines -- 2.2 Association Rules -- 2.3 Related Works -- 3 FMAR Recommender System -- 3.1 Problem Definition -- 3.2 Factorization Machine Apriori Based Model -- 3.3 Factorization Machine FP-Growth Based Model -- 4 Evaluation for FMAR -- 4.1 Performance Comparison and Analysis -- 5 Conclusions and Future Work -- References -- An Empirical Experiment on Feature Extractions Based for Speech Emotion Recognition -- 1 Introduction -- 2 Literature Review -- 3 Dataset -- 4 Feature Extraction -- 5 Methodology -- 5.1 Input Preparation. 5.2 Classification Models -- 6 Experimental Results -- 7 Conclusion and Discussion -- References -- Parameter Distribution Ensemble Learning for Sudden Concept Drift Detection -- 1 Introduction -- 2 Methods -- 2.1 BO-ERICS Phase -- 2.2 Ensemble Phase -- 3 Experiments and Discussion -- 3.1 Datasets -- 3.2 Evaluation -- 3.3 Results -- 3.4 Discussion -- 4 Conclusions -- References -- MLP-Mixer Approach for Corn Leaf Diseases Classification -- 1 Introduction -- 2 Related Work -- 2.1 Literature Review -- 2.2 MLP-Mixer -- 2.3 Deep Learning -- 3 Methods -- 3.1 Data Requirements, Collection and Preparation -- 3.2 Configure the Hyperparameters -- 3.3 Build a Classification Model -- 3.4 Define an Experiment and Data Augmentation -- 3.5 The MLP-Mixer Model Structure -- 3.6 Build, Train, and Evaluate the MLP-Mixer Model -- 4 Experiment and Result -- 4.1 Image Segmentation -- 4.2 Experiment Results (Train and Evaluate Model) -- 4.3 Discussion -- 5 Conclusion -- References -- A Novel Neural Network Training Method for Autonomous Driving Using Semi-Pseudo-Labels and 3D Data Augmentations -- 1 Introduction -- 2 Related Work -- 3 A Novel Training Method with Semi-Pseudo-Labeling and 3D Augmentations -- 3.1 Semi-Pseudo-Labeling -- 3.2 3D Augmentations -- 3.3 An Example of Training with Semi-Pseudo-Labeling and 3D Augmentations -- 4 Experiments -- 4.1 Argoverse -- 4.2 In-House Highway Dataset -- 5 Conclusion -- References -- Machine Learning Methods for BIM Data -- 1 Introduction -- 2 BIM Data - IFC Files -- 3 Machine Learning Techniques for BIM -- 3.1 Learning Semantic Information - Space Classification -- 3.2 Semantic Enrichment of BIM Models from Point Clouds -- 3.3 Building Condition Diagnosis -- 3.4 BIM Enhancement in the Facility Management Context -- 3.5 Knowledge Extraction from BIM -- 4 Conclusions -- References. Self-Optimizing Neural Network in Classification of Real Valued Experimental Data -- 1 Introduction -- 2 Self Optimizing Neural Network -- 2.1 SONN Formalism -- 2.2 Fundamental Coefficient of Discrimination -- 2.3 Structure of the Network and the Weight Factor -- 2.4 Network Response -- 3 Experiment and Results -- 3.1 Dataset -- 3.2 Data Preparation -- 3.3 Classification -- 4 Conclusion -- References -- Analyzing the Effectiveness of the Gaussian Mixture Model Clustering Algorithm in Software Enhancement Effort Estimation -- 1 Introduction -- 2 Backgrounds -- 2.1 The FPA Overview -- 2.2 The Gaussian Mixture Model Clustering Algorithm -- 2.3 The k-means Clustering Algorithm -- 3 Research Methodology -- 3.1 Dataset Pre-processing -- 3.2 Determine the Number of Clusters -- 3.3 Evaluation Criteria -- 4 Results and Discussions -- 5 Conclusion -- References -- Graph Classification via Graph Structure Learning -- 1 Introduction -- 2 Related Works -- 3 Proposed Method: GC-GSL -- 3.1 Extracting Topological Attribute Vector -- 3.2 Rooted Subgraph Mining -- 3.3 Neural Network Graph Embedding -- 3.4 Computational Complexity -- 4 Experiments -- 4.1 Results -- 4.2 Discussions -- 5 Conclusion -- References -- Relearning Ensemble Selection Based on New Generated Features -- 1 Introduction -- 2 Related Works -- 3 The Proposed Framework -- 3.1 Generation of Diverse Base Classifiers -- 3.2 Relearning Base Classifiers -- 3.3 Feature Generation Based on Learned and Relearned Base Classifiers -- 3.4 Learning Second-Level Base Classifier Based on New Vector of the Features -- 3.5 Selection Base Classifiers Based on Second-Level Classification Result -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Results -- 5 Discussion -- 6 Conclusions -- References -- Random Forest in Whitelist-Based ATM Security -- 1 Introduction -- 2 Related Work -- 3 Test Procedure. 4 Data Pre-processing. |
Record Nr. | UNINA-9910634044103321 |
Nguyen Ngoc Thanh (Computer scientist) | ||
Cham : , : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|