New Perspectives in Algebra, Topology and Categories : Summer School, Louvain-la-Neuve, Belgium, September 12-15, 2018 and September 11-14, 2019 / Maria Manuel Clementino, Alberto Facchini, Marino Gran editors |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | xi, 258 p. : ill. ; 24 cm |
Soggetto topico |
55-XX - Algebraic topology [MSC 2020]
13-XX - Commutative algebra [MSC 2020] 16-XX - Associative rings and algebras [MSC 2020] 18-XX - Category theory; homological algebra [MSC 2020] 54-XX - General topology [MSC 2020] 00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020] |
Soggetto non controllato |
Categorical Algebra
Category of Rings Commutative Monoid Commutator theory Frame Homological Category Locale Non-Associative Algebra Normal Subobject Point-free topology Regular Category Semi-abelian Category Split Extension Topological algebra Universal algebra |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0275020 |
Cham, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
New Perspectives in Algebra, Topology and Categories : Summer School, Louvain-la-Neuve, Belgium, September 12-15, 2018 and September 11-14, 2019 / Maria Manuel Clementino, Alberto Facchini, Marino Gran editors |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | xi, 258 p. : ill. ; 24 cm |
Soggetto topico |
00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020]
13-XX - Commutative algebra [MSC 2020] 16-XX - Associative rings and algebras [MSC 2020] 18-XX - Category theory; homological algebra [MSC 2020] 54-XX - General topology [MSC 2020] 55-XX - Algebraic topology [MSC 2020] |
Soggetto non controllato |
Categorical Algebra
Category of Rings Commutative Monoid Commutator theory Frame Homological Category Locale Non-Associative Algebra Normal Subobject Point-free topology Regular Category Semi-abelian Category Split Extension Topological algebra Universal algebra |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00275020 |
Cham, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
The equationally-defined commutator : a study in equational logic and algebra / Janusz Czelakowski |
Autore | Czelakowski, Janusz |
Pubbl/distr/stampa | [Cham], : Birkhäuser, : Springer, 2015 |
Descrizione fisica | IX, 292 p. : ill. ; 24 cm |
Soggetto topico |
08B10 - Congruence modularity, congruence distributivity [MSC 2020]
08-XX - General algebraic systems [MSC 2020] 03C05 - Equational classes, universal algebra in model theory [MSC 2020] 08A30 - Subalgebras, congruence relations [MSC 2020] 03G27 - Abstract algebraic logic [MSC 2020] 06C05 - Modular lattices, Desarguesian lattices [MSC 2020] 08A35 - Automorphisms, endomorphisms of algebraic structures [MSC 2020] 08B05 - Equational logic, Mal'tsev conditions [MSC 2020] 08C15 - Quasivarieties [MSC 2020] |
Soggetto non controllato |
Abstract algebraic logic
Commutator Commutator theory Equational logic Quasivarieties Universal algebra |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0113687 |
Czelakowski, Janusz | ||
[Cham], : Birkhäuser, : Springer, 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
The equationally-defined commutator : a study in equational logic and algebra / Janusz Czelakowski |
Autore | Czelakowski, Janusz |
Pubbl/distr/stampa | [Cham], : Birkhäuser, : Springer, 2015 |
Descrizione fisica | IX, 292 p. : ill. ; 24 cm |
Soggetto topico |
03C05 - Equational classes, universal algebra in model theory [MSC 2020]
03G27 - Abstract algebraic logic [MSC 2020] 06C05 - Modular lattices, Desarguesian lattices [MSC 2020] 08-XX - General algebraic systems [MSC 2020] 08A30 - Subalgebras, congruence relations [MSC 2020] 08A35 - Automorphisms, endomorphisms of algebraic structures [MSC 2020] 08B05 - Equational logic, Mal'tsev conditions [MSC 2020] 08B10 - Congruence modularity, congruence distributivity [MSC 2020] 08C15 - Quasivarieties [MSC 2020] |
Soggetto non controllato |
Abstract algebraic logic
Commutator Commutator theory Equational logic Quasivarieties Universal algebra |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00113687 |
Czelakowski, Janusz | ||
[Cham], : Birkhäuser, : Springer, 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|