top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Automorphic Forms on Adele Groups. (AM-83), Volume 83 / / Stephen S. Gelbart
Automorphic Forms on Adele Groups. (AM-83), Volume 83 / / Stephen S. Gelbart
Autore Gelbart Stephen S.
Pubbl/distr/stampa Princeton, NJ : , : Princeton University Press, , [2016]
Descrizione fisica 1 online resource (280 pages)
Disciplina 512/.22
Collana Annals of Mathematics Studies
Soggetto topico Representations of groups
Automorphic forms
Linear algebraic groups
Adeles
Soggetto non controllato Abelian extension
Abelian group
Absolute value
Addition
Additive group
Algebraic group
Algebraic number field
Algebraic number theory
Analytic continuation
Analytic function
Arbitrarily large
Automorphic form
Cartan subgroup
Class field theory
Complex space
Congruence subgroup
Conjugacy class
Coprime integers
Cusp form
Differential equation
Dimension (vector space)
Direct integral
Direct sum
Division algebra
Eigenfunction
Eigenvalues and eigenvectors
Eisenstein series
Euler product
Existential quantification
Exponential function
Factorization
Finite field
Formal power series
Fourier series
Fourier transform
Fuchsian group
Function (mathematics)
Function space
Functional equation
Fundamental unit (number theory)
Galois extension
Global field
Group algebra
Group representation
Haar measure
Harish-Chandra
Hecke L-function
Hilbert space
Homomorphism
Induced representation
Infinite product
Inner automorphism
Integer
Invariant measure
Invariant subspace
Irreducible representation
L-function
Lie algebra
Linear map
Matrix coefficient
Mellin transform
Meromorphic function
Modular form
P-adic number
Poisson summation formula
Prime ideal
Prime number
Principal series representation
Projective representation
Quadratic field
Quadratic form
Quaternion algebra
Quaternion
Real number
Regular representation
Representation theory
Ring (mathematics)
Ring of integers
Scientific notation
Selberg trace formula
Simple algebra
Square-integrable function
Sub"ient
Subgroup
Summation
Theorem
Theory
Theta function
Topological group
Topology
Trace formula
Trivial representation
Uniqueness theorem
Unitary operator
Unitary representation
Universal enveloping algebra
Upper half-plane
Variable (mathematics)
Vector space
Weil group
ISBN 1-4008-8161-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- PREFACE -- CONTENTS -- §1. THE CLASSICAL THEORY -- §2. AUTOMORPHIC FORMS AND THE DECOMPOSITION OF L2(ΓSL(2,ℝ)) -- §3. AUTOMORPHIC FORMS AS FUNCTIONS ON THE ADELE GROUP OF GL(2) -- §4. THE REPRESENTATIONS OF GL(2) OVER LOCAL AND GLOBAL FIELDS -- §5 . CUSP FORMS AND REPRESENTATIONS OF THE ADELE GROUP OF GL(2) -- §6. HECKE THEORY FOR GL(2) -- §7 . THE CONSTRUCTION OF A SPECIAL CLASS OF AUTOMORPHIC FORMS -- § 8 . EISENSTEIN SERIES AND THE CONTINUOUS SPECTRUM -- §9. THE TRACE FORMULA FOR GL(2) -- §10. AUTOMORPHIC FORMS ON A QUATERNION ALGEBRA -- BIBLIOGRAPHY -- INDEX
Record Nr. UNINA-9910154753203321
Gelbart Stephen S.  
Princeton, NJ : , : Princeton University Press, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Emil Artin and Helmut Hasse : the correspondence 1923-1958 / Günther Frei, Franz Lemmermeyer, Peter J. Roquette editors ; translated from the german by Franz Lemmermeyer
Emil Artin and Helmut Hasse : the correspondence 1923-1958 / Günther Frei, Franz Lemmermeyer, Peter J. Roquette editors ; translated from the german by Franz Lemmermeyer
Autore Artin, Emil
Pubbl/distr/stampa Basel, : Springer, 2014
Descrizione fisica XX, 484 p. : ill. ; 24 cm
Altri autori (Persone) Hasse, Helmut
Soggetto topico 11-XX - Number theory [MSC 2020]
01A70 - Biographies, obituaries, personalia, bibliographies [MSC 2020]
Soggetto non controllato Artin's reciprocity law
Class field theory
Emil Artin
Helmut Hasse
L-series
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0103081
Artin, Emil  
Basel, : Springer, 2014
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Emil Artin and Helmut Hasse : the correspondence 1923-1958 / Günther Frei, Franz Lemmermeyer, Peter J. Roquette editors ; translated from the german by Franz Lemmermeyer
Emil Artin and Helmut Hasse : the correspondence 1923-1958 / Günther Frei, Franz Lemmermeyer, Peter J. Roquette editors ; translated from the german by Franz Lemmermeyer
Autore Artin, Emil
Pubbl/distr/stampa Basel, : Springer, 2014
Descrizione fisica XX, 484 p. : ill. ; 24 cm
Altri autori (Persone) Hasse, Helmut
Soggetto topico 01A70 - Biographies, obituaries, personalia, bibliographies [MSC 2020]
11-XX - Number theory [MSC 2020]
Soggetto non controllato Artin's reciprocity law
Class field theory
Emil Artin
Helmut Hasse
L-series
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00103081
Artin, Emil  
Basel, : Springer, 2014
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Euler systems / / by Karl Rubin
Euler systems / / by Karl Rubin
Autore Rubin Karl
Pubbl/distr/stampa Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000
Descrizione fisica 1 online resource (241 p.)
Disciplina 512/.74
Collana Annals of Mathematics Studies
Soggetto topico Algebraic number theory
p-adic numbers
Soggetto non controllato Abelian extension
Abelian variety
Absolute Galois group
Algebraic closure
Barry Mazur
Big O notation
Birch and Swinnerton-Dyer conjecture
Cardinality
Class field theory
Coefficient
Cohomology
Complex multiplication
Conjecture
Corollary
Cyclotomic field
Dimension (vector space)
Divisibility rule
Eigenvalues and eigenvectors
Elliptic curve
Error term
Euler product
Euler system
Exact sequence
Existential quantification
Field of fractions
Finite set
Functional equation
Galois cohomology
Galois group
Galois module
Gauss sum
Global field
Heegner point
Ideal class group
Integer
Inverse limit
Inverse system
Karl Rubin
Local field
Mathematical induction
Maximal ideal
Modular curve
Modular elliptic curve
Natural number
Orthogonality
P-adic number
Pairing
Principal ideal
R-factor (crystallography)
Ralph Greenberg
Remainder
Residue field
Ring of integers
Scientific notation
Selmer group
Subgroup
Tate module
Taylor series
Tensor product
Theorem
Upper and lower bounds
Victor Kolyvagin
ISBN 0-691-05075-9
1-4008-6520-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index
Record Nr. UNINA-9910786510103321
Rubin Karl  
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Euler systems / / by Karl Rubin
Euler systems / / by Karl Rubin
Autore Rubin Karl
Pubbl/distr/stampa Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000
Descrizione fisica 1 online resource (241 p.)
Disciplina 512/.74
Collana Annals of Mathematics Studies
Soggetto topico Algebraic number theory
p-adic numbers
Soggetto non controllato Abelian extension
Abelian variety
Absolute Galois group
Algebraic closure
Barry Mazur
Big O notation
Birch and Swinnerton-Dyer conjecture
Cardinality
Class field theory
Coefficient
Cohomology
Complex multiplication
Conjecture
Corollary
Cyclotomic field
Dimension (vector space)
Divisibility rule
Eigenvalues and eigenvectors
Elliptic curve
Error term
Euler product
Euler system
Exact sequence
Existential quantification
Field of fractions
Finite set
Functional equation
Galois cohomology
Galois group
Galois module
Gauss sum
Global field
Heegner point
Ideal class group
Integer
Inverse limit
Inverse system
Karl Rubin
Local field
Mathematical induction
Maximal ideal
Modular curve
Modular elliptic curve
Natural number
Orthogonality
P-adic number
Pairing
Principal ideal
R-factor (crystallography)
Ralph Greenberg
Remainder
Residue field
Ring of integers
Scientific notation
Selmer group
Subgroup
Tate module
Taylor series
Tensor product
Theorem
Upper and lower bounds
Victor Kolyvagin
ISBN 0-691-05075-9
1-4008-6520-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index
Record Nr. UNINA-9910816804403321
Rubin Karl  
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Galois Cohomology and Class Field Theory / David Harari ; Translated from the french by Andrei Yafaev
Galois Cohomology and Class Field Theory / David Harari ; Translated from the french by Andrei Yafaev
Autore Harari, David
Pubbl/distr/stampa Cham, : EDP Sciences, : Springer, 2020
Descrizione fisica xiv, 338 p. : ill. ; 24 cm
Soggetto topico 11-XX - Number theory [MSC 2020]
11R37 - Class field theory [MSC 2020]
11R29 - Class numbers, class groups, discriminants [MSC 2020]
11S31 - Class field theory; p-adic formal groups [MSC 2020]
11R34 - Galois cohomology [MSC 2020]
11S25 - Galois cohomology [MSC 2020]
12G05 - Galois cohomology [MSC 2020]
Soggetto non controllato Brauer group
Class field theory
Galois cohomology
Global fields
Local fields
Lubin-Tate formal group
Poitou-Tate duality
Profinite groups
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0249286
Harari, David  
Cham, : EDP Sciences, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Galois Cohomology and Class Field Theory / David Harari ; Translated from the french by Andrei Yafaev
Galois Cohomology and Class Field Theory / David Harari ; Translated from the french by Andrei Yafaev
Autore Harari, David
Pubbl/distr/stampa Cham, : EDP Sciences, : Springer, 2020
Descrizione fisica xiv, 338 p. : ill. ; 24 cm
Soggetto topico 11-XX - Number theory [MSC 2020]
11R29 - Class numbers, class groups, discriminants [MSC 2020]
11R34 - Galois cohomology [MSC 2020]
11R37 - Class field theory [MSC 2020]
11S25 - Galois cohomology [MSC 2020]
11S31 - Class field theory; p-adic formal groups [MSC 2020]
12G05 - Galois cohomology [MSC 2020]
Soggetto non controllato Brauer group
Class field theory
Galois cohomology
Global fields
Local fields
Lubin-Tate formal group
Poitou-Tate duality
Profinite groups
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00249286
Harari, David  
Cham, : EDP Sciences, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Lectures on P-Adic L-Functions. (AM-74), Volume 74 / / Kinkichi Iwasawa
Lectures on P-Adic L-Functions. (AM-74), Volume 74 / / Kinkichi Iwasawa
Autore Iwasawa Kinkichi
Pubbl/distr/stampa Princeton, NJ : , : Princeton University Press, , [2016]
Descrizione fisica 1 online resource (116 pages)
Disciplina 512/.74
Collana Annals of Mathematics Studies
Soggetto topico L-functions
Algebraic number theory
Soggetto non controllato Abelian extension
Absolute value
Algebraic closure
Algebraic number field
Algebraic number theory
Algebraic number
Algebraically closed field
Arithmetic function
Class field theory
Complex number
Conjecture
Cyclotomic field
Dirichlet character
Existential quantification
Finite group
Integer
L-function
Mellin transform
Meromorphic function
Multiplicative group
P-adic L-function
P-adic number
Power series
Prime number
Quadratic field
Rational number
Real number
Root of unity
Scientific notation
Series (mathematics)
Special case
Subgroup
Theorem
Topology
ISBN 1-4008-8170-6
Classificazione SI 830
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- PREFACE / Iwasawa, Kenkichi -- CONTENTS -- §1. DIRICHLET'S L-FUNCTIONS -- §2. GENERALIZED BERNOULLI NUMBERS -- §3. p-ADIC L-FUNCTIONS -- §4. p-ADIC LOGARITHMS AND p-ADIC REGULATORS -- §5. CALCULATION OF Lp (1; χ) -- §6. AN ALTERNATE METHOD -- §7. SOME APPLICATIONS -- APPENDIX -- BIBLIOGRAPHY
Record Nr. UNINA-9910154753503321
Iwasawa Kinkichi  
Princeton, NJ : , : Princeton University Press, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Number fields / Daniel A. Marcus ; Typeset in LATEX by Emanuele Sacco
Number fields / Daniel A. Marcus ; Typeset in LATEX by Emanuele Sacco
Autore Marcus, Daniel A.
Edizione [2. ed]
Pubbl/distr/stampa Cham, : Springer, 2018
Descrizione fisica xviii, 203 p. ; 24 cm
Soggetto topico 11Rxx - Algebraic number theory: global fields [MSC 2020]
12-XX - Field theory and polynomials [MSC 2020]
11Txx - Finite fields and commutative rings (number-theoretic aspects) [MSC 2020]
Soggetto non controllato Class field theory
Dedekind zeta function and the class number formula
Distribution of ideals
Distribution of primes
Galois theory applied to prime decomposition
Ideal class group
Number fields
Number rings
Prime decomposition in number rings
Unit group
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0124901
Marcus, Daniel A.  
Cham, : Springer, 2018
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Number fields / Daniel A. Marcus ; Typeset in LATEX by Emanuele Sacco
Number fields / Daniel A. Marcus ; Typeset in LATEX by Emanuele Sacco
Autore Marcus, Daniel A.
Edizione [2. ed]
Pubbl/distr/stampa Cham, : Springer, 2018
Descrizione fisica xviii, 203 p. ; 24 cm
Soggetto topico 11Rxx - Algebraic number theory: global fields [MSC 2020]
11Txx - Finite fields and commutative rings (number-theoretic aspects) [MSC 2020]
12-XX - Field theory and polynomials [MSC 2020]
Soggetto non controllato Class field theory
Dedekind zeta function and the class number formula
Distribution of ideals
Distribution of primes
Galois theory applied to prime decomposition
Ideal class group
Number fields
Number rings
Prime decomposition in number rings
Unit group
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00124901
Marcus, Daniel A.  
Cham, : Springer, 2018
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui