Automorphic Forms on Adele Groups. (AM-83), Volume 83 / / Stephen S. Gelbart |
Autore | Gelbart Stephen S. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (280 pages) |
Disciplina | 512/.22 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Representations of groups
Automorphic forms Linear algebraic groups Adeles |
Soggetto non controllato |
Abelian extension
Abelian group Absolute value Addition Additive group Algebraic group Algebraic number field Algebraic number theory Analytic continuation Analytic function Arbitrarily large Automorphic form Cartan subgroup Class field theory Complex space Congruence subgroup Conjugacy class Coprime integers Cusp form Differential equation Dimension (vector space) Direct integral Direct sum Division algebra Eigenfunction Eigenvalues and eigenvectors Eisenstein series Euler product Existential quantification Exponential function Factorization Finite field Formal power series Fourier series Fourier transform Fuchsian group Function (mathematics) Function space Functional equation Fundamental unit (number theory) Galois extension Global field Group algebra Group representation Haar measure Harish-Chandra Hecke L-function Hilbert space Homomorphism Induced representation Infinite product Inner automorphism Integer Invariant measure Invariant subspace Irreducible representation L-function Lie algebra Linear map Matrix coefficient Mellin transform Meromorphic function Modular form P-adic number Poisson summation formula Prime ideal Prime number Principal series representation Projective representation Quadratic field Quadratic form Quaternion algebra Quaternion Real number Regular representation Representation theory Ring (mathematics) Ring of integers Scientific notation Selberg trace formula Simple algebra Square-integrable function Sub"ient Subgroup Summation Theorem Theory Theta function Topological group Topology Trace formula Trivial representation Uniqueness theorem Unitary operator Unitary representation Universal enveloping algebra Upper half-plane Variable (mathematics) Vector space Weil group |
ISBN | 1-4008-8161-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- PREFACE -- CONTENTS -- §1. THE CLASSICAL THEORY -- §2. AUTOMORPHIC FORMS AND THE DECOMPOSITION OF L2(ΓSL(2,ℝ)) -- §3. AUTOMORPHIC FORMS AS FUNCTIONS ON THE ADELE GROUP OF GL(2) -- §4. THE REPRESENTATIONS OF GL(2) OVER LOCAL AND GLOBAL FIELDS -- §5 . CUSP FORMS AND REPRESENTATIONS OF THE ADELE GROUP OF GL(2) -- §6. HECKE THEORY FOR GL(2) -- §7 . THE CONSTRUCTION OF A SPECIAL CLASS OF AUTOMORPHIC FORMS -- § 8 . EISENSTEIN SERIES AND THE CONTINUOUS SPECTRUM -- §9. THE TRACE FORMULA FOR GL(2) -- §10. AUTOMORPHIC FORMS ON A QUATERNION ALGEBRA -- BIBLIOGRAPHY -- INDEX |
Record Nr. | UNINA-9910154753203321 |
Gelbart Stephen S. | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Emil Artin and Helmut Hasse : the correspondence 1923-1958 / Günther Frei, Franz Lemmermeyer, Peter J. Roquette editors ; translated from the german by Franz Lemmermeyer |
Autore | Artin, Emil |
Pubbl/distr/stampa | Basel, : Springer, 2014 |
Descrizione fisica | XX, 484 p. : ill. ; 24 cm |
Altri autori (Persone) | Hasse, Helmut |
Soggetto topico |
11-XX - Number theory [MSC 2020]
01A70 - Biographies, obituaries, personalia, bibliographies [MSC 2020] |
Soggetto non controllato |
Artin's reciprocity law
Class field theory Emil Artin Helmut Hasse L-series |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0103081 |
Artin, Emil | ||
Basel, : Springer, 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Emil Artin and Helmut Hasse : the correspondence 1923-1958 / Günther Frei, Franz Lemmermeyer, Peter J. Roquette editors ; translated from the german by Franz Lemmermeyer |
Autore | Artin, Emil |
Pubbl/distr/stampa | Basel, : Springer, 2014 |
Descrizione fisica | XX, 484 p. : ill. ; 24 cm |
Altri autori (Persone) | Hasse, Helmut |
Soggetto topico |
01A70 - Biographies, obituaries, personalia, bibliographies [MSC 2020]
11-XX - Number theory [MSC 2020] |
Soggetto non controllato |
Artin's reciprocity law
Class field theory Emil Artin Helmut Hasse L-series |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00103081 |
Artin, Emil | ||
Basel, : Springer, 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Euler systems / / by Karl Rubin |
Autore | Rubin Karl |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 512/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Algebraic number theory
p-adic numbers |
Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
ISBN |
0-691-05075-9
1-4008-6520-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
Record Nr. | UNINA-9910786510103321 |
Rubin Karl | ||
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Euler systems / / by Karl Rubin |
Autore | Rubin Karl |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 512/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Algebraic number theory
p-adic numbers |
Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
ISBN |
0-691-05075-9
1-4008-6520-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
Record Nr. | UNINA-9910816804403321 |
Rubin Karl | ||
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Galois Cohomology and Class Field Theory / David Harari ; Translated from the french by Andrei Yafaev |
Autore | Harari, David |
Pubbl/distr/stampa | Cham, : EDP Sciences, : Springer, 2020 |
Descrizione fisica | xiv, 338 p. : ill. ; 24 cm |
Soggetto topico |
11-XX - Number theory [MSC 2020]
11R37 - Class field theory [MSC 2020] 11R29 - Class numbers, class groups, discriminants [MSC 2020] 11S31 - Class field theory; p-adic formal groups [MSC 2020] 11R34 - Galois cohomology [MSC 2020] 11S25 - Galois cohomology [MSC 2020] 12G05 - Galois cohomology [MSC 2020] |
Soggetto non controllato |
Brauer group
Class field theory Galois cohomology Global fields Local fields Lubin-Tate formal group Poitou-Tate duality Profinite groups |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0249286 |
Harari, David | ||
Cham, : EDP Sciences, : Springer, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Galois Cohomology and Class Field Theory / David Harari ; Translated from the french by Andrei Yafaev |
Autore | Harari, David |
Pubbl/distr/stampa | Cham, : EDP Sciences, : Springer, 2020 |
Descrizione fisica | xiv, 338 p. : ill. ; 24 cm |
Soggetto topico |
11-XX - Number theory [MSC 2020]
11R29 - Class numbers, class groups, discriminants [MSC 2020] 11R34 - Galois cohomology [MSC 2020] 11R37 - Class field theory [MSC 2020] 11S25 - Galois cohomology [MSC 2020] 11S31 - Class field theory; p-adic formal groups [MSC 2020] 12G05 - Galois cohomology [MSC 2020] |
Soggetto non controllato |
Brauer group
Class field theory Galois cohomology Global fields Local fields Lubin-Tate formal group Poitou-Tate duality Profinite groups |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00249286 |
Harari, David | ||
Cham, : EDP Sciences, : Springer, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Lectures on P-Adic L-Functions. (AM-74), Volume 74 / / Kinkichi Iwasawa |
Autore | Iwasawa Kinkichi |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (116 pages) |
Disciplina | 512/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
L-functions
Algebraic number theory |
Soggetto non controllato |
Abelian extension
Absolute value Algebraic closure Algebraic number field Algebraic number theory Algebraic number Algebraically closed field Arithmetic function Class field theory Complex number Conjecture Cyclotomic field Dirichlet character Existential quantification Finite group Integer L-function Mellin transform Meromorphic function Multiplicative group P-adic L-function P-adic number Power series Prime number Quadratic field Rational number Real number Root of unity Scientific notation Series (mathematics) Special case Subgroup Theorem Topology |
ISBN | 1-4008-8170-6 |
Classificazione | SI 830 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- PREFACE / Iwasawa, Kenkichi -- CONTENTS -- §1. DIRICHLET'S L-FUNCTIONS -- §2. GENERALIZED BERNOULLI NUMBERS -- §3. p-ADIC L-FUNCTIONS -- §4. p-ADIC LOGARITHMS AND p-ADIC REGULATORS -- §5. CALCULATION OF Lp (1; χ) -- §6. AN ALTERNATE METHOD -- §7. SOME APPLICATIONS -- APPENDIX -- BIBLIOGRAPHY |
Record Nr. | UNINA-9910154753503321 |
Iwasawa Kinkichi | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Number fields / Daniel A. Marcus ; Typeset in LATEX by Emanuele Sacco |
Autore | Marcus, Daniel A. |
Edizione | [2. ed] |
Pubbl/distr/stampa | Cham, : Springer, 2018 |
Descrizione fisica | xviii, 203 p. ; 24 cm |
Soggetto topico |
11Rxx - Algebraic number theory: global fields [MSC 2020]
12-XX - Field theory and polynomials [MSC 2020] 11Txx - Finite fields and commutative rings (number-theoretic aspects) [MSC 2020] |
Soggetto non controllato |
Class field theory
Dedekind zeta function and the class number formula Distribution of ideals Distribution of primes Galois theory applied to prime decomposition Ideal class group Number fields Number rings Prime decomposition in number rings Unit group |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0124901 |
Marcus, Daniel A. | ||
Cham, : Springer, 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Number fields / Daniel A. Marcus ; Typeset in LATEX by Emanuele Sacco |
Autore | Marcus, Daniel A. |
Edizione | [2. ed] |
Pubbl/distr/stampa | Cham, : Springer, 2018 |
Descrizione fisica | xviii, 203 p. ; 24 cm |
Soggetto topico |
11Rxx - Algebraic number theory: global fields [MSC 2020]
11Txx - Finite fields and commutative rings (number-theoretic aspects) [MSC 2020] 12-XX - Field theory and polynomials [MSC 2020] |
Soggetto non controllato |
Class field theory
Dedekind zeta function and the class number formula Distribution of ideals Distribution of primes Galois theory applied to prime decomposition Ideal class group Number fields Number rings Prime decomposition in number rings Unit group |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00124901 |
Marcus, Daniel A. | ||
Cham, : Springer, 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|