Introduction to Toric Varieties. (AM-131), Volume 131 / / William Fulton |
Autore | Fulton William |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (171 pages) : illustrations |
Disciplina | 516.3/53 |
Collana | Annals of Mathematics Studies |
Soggetto topico | Toric varieties |
Soggetto non controllato |
Addition
Affine plane Affine space Affine variety Alexander Grothendieck Alexander duality Algebraic curve Algebraic group Atiyah–Singer index theorem Automorphism Betti number Big O notation Characteristic class Chern class Chow group Codimension Cohomology Combinatorics Commutative property Complete intersection Convex polytope Convex set Coprime integers Cotangent space Dedekind sum Dimension (vector space) Dimension Direct proof Discrete valuation ring Discrete valuation Disjoint union Divisor (algebraic geometry) Divisor Dual basis Dual space Equation Equivalence class Equivariant K-theory Euler characteristic Exact sequence Explicit formula Facet (geometry) Fundamental group Graded ring Grassmannian H-vector Hirzebruch surface Hodge theory Homogeneous coordinates Homomorphism Hypersurface Intersection theory Invertible matrix Invertible sheaf Isoperimetric inequality Lattice (group) Leray spectral sequence Limit point Line bundle Line segment Linear subspace Local ring Mathematical induction Mixed volume Moduli space Moment map Monotonic function Natural number Newton polygon Open set Picard group Pick's theorem Polytope Projective space Quadric Quotient space (topology) Regular sequence Relative interior Resolution of singularities Restriction (mathematics) Resultant Riemann–Roch theorem Serre duality Sign (mathematics) Simplex Simplicial complex Simultaneous equations Spectral sequence Subgroup Subset Summation Surjective function Tangent bundle Theorem Topology Toric variety Unit disk Vector space Weil conjecture Zariski topology |
ISBN | 1-4008-8252-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Errata -- Chapter 1. Definitions and examples -- Chapter 2. Singularities and compactness -- Chapter 3. Orbits, topology, and line bundles -- Chapter 4. Moment maps and the tangent bundle -- Chapter 5. Intersection theory -- Notes -- References -- Index of Notation -- Index |
Record Nr. | UNINA-9910154749903321 |
Fulton William
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127 / / Gerd Faltings |
Autore | Faltings Gerd |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (113 pages) |
Disciplina | 516.3/5 |
Altri autori (Persone) | ZhangShouwu |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Geometry, Algebraic
Riemann-Roch theorems |
Soggetto non controllato |
Addition
Adjoint Alexander Grothendieck Algebraic geometry Analytic torsion Arakelov theory Asymptote Asymptotic expansion Asymptotic formula Big O notation Cartesian coordinate system Characteristic class Chern class Chow group Closed immersion Codimension Coherent sheaf Cohomology Combination Commutator Computation Covariant derivative Curvature Derivative Determinant Diagonal Differentiable manifold Differential form Dimension (vector space) Divisor Domain of a function Dual basis E6 (mathematics) Eigenvalues and eigenvectors Embedding Endomorphism Exact sequence Exponential function Generic point Heat kernel Injective function Intersection theory K-group Levi-Civita connection Line bundle Linear algebra Local coordinates Mathematical induction Morphism Natural number Neighbourhood (mathematics) Parameter Projective space Pullback (category theory) Pullback (differential geometry) Pullback Riemannian manifold Riemann–Roch theorem Self-adjoint operator Smoothness Sobolev space Stochastic calculus Summation Supertrace Theorem Transition function Upper half-plane Vector bundle Volume form |
ISBN | 1-4008-8247-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- LIST OF SYMBOLS -- LECTURE 1. CLASSICAL RIEMANN-ROCH THEOREM -- LECTURE 2. CHERN CLASSES OF ARITHMETIC VECTOR BUNDLES -- LECTURE 3. LAPLACIANS AND HEAT KERNELS -- LECTURE 4. THE LOCAL INDEX THEOREM FOR DIRAC OPERATORS -- LECTURE 5. NUMBER OPERATORS AND DIRECT IMAGES -- LECTURE 6. ARITHMETIC RIEMANN-ROCH THEOREM -- LECTURE 7. THE THEOREM OF BISMUT-VASSEROT -- REFERENCES |
Record Nr. | UNINA-9910154744103321 |
Faltings Gerd
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|