top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Additive Manufacturing and Metal Joining : Proceedings of AIMTDR 2021 / / edited by N. Ramesh Babu, Santosh Kumar, P. R. Thyla, K. Sripriyan
Advances in Additive Manufacturing and Metal Joining : Proceedings of AIMTDR 2021 / / edited by N. Ramesh Babu, Santosh Kumar, P. R. Thyla, K. Sripriyan
Autore Ramesh Babu N
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (458 pages)
Disciplina 670
Altri autori (Persone) KumarSantosh
ThylaP. R
SripriyanK
Collana Lecture Notes in Mechanical Engineering
Soggetto topico Industrial engineering
Production engineering
Materials
Industrial and Production Engineering
Materials Engineering
Process Engineering
Soggetto non controllato Materials
Chemistry, Technical
Industrial Engineering
Technology & Engineering
Science
ISBN 9789811976124
9789811976117
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto A Review on Fused Deposition Modeling of Thermoplastics -- Analysis of Density of Laser Powder Bed Fusion Fabricated Part using Decision Tree Algorithm -- ANP-MOORA Based Approach for Selection of FDM 3D Printer Filament.
Record Nr. UNINA-9910725092103321
Ramesh Babu N  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Basic Protocols in Enology and Winemaking / / edited by Maurício Bonatto Machado de Castilhos
Basic Protocols in Enology and Winemaking / / edited by Maurício Bonatto Machado de Castilhos
Edizione [1st ed. 2023.]
Pubbl/distr/stampa New York, NY : , : Springer US : , : Imprint : Humana, , 2023
Descrizione fisica 1 online resource (198 pages)
Disciplina 641.22
Collana Methods and Protocols in Food Science
Soggetto topico Food science
Food Science
Soggetto non controllato Chemistry, Technical
Science
ISBN 9781071630884
9781071630877
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Total and volatile acidity: traditional and advanced methods -- Alcohol content: traditional and advanced methods -- Total and reducing sugars: traditional and advanced methods -- Total phenolic content: traditional methods -- Color indexes: Traditional and advanced methods -- Anthocyanin identification and quantitation by High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-MSn) -- Flavonol identification and quantitation by High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-MSn) -- Flavan-3-ol (flavanol) identification by quantitation by High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-MSn) -- Hydroxybenzoic and hydroxycinnamic acid derivatives (HCAD) identification and quantitation by High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-MSn) -- Stilbene identification and quantitation by High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-MS) -- Analysis of the free and bound fraction of volatile compounds in musts and wines by GC/MS. Results interpretation from the sensory point of view by OAV technique -- Identification of wine compounds by Nuclear Magnetic Resonance -- Ethanol suppression on wine analysis using Nuclear Magnetic Resonance (NMR) -- Methods to determine biogenic amines in wine by RP-HPLC.
Record Nr. UNINA-9910725099203321
New York, NY : , : Springer US : , : Imprint : Humana, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Consumer research methods in food science / / Carlos Gómez-Corona and Heber Rodrigues, editors
Consumer research methods in food science / / Carlos Gómez-Corona and Heber Rodrigues, editors
Edizione [1st ed.]
Pubbl/distr/stampa New York, NY : , : Humana, Springer Science+Business Media, LLC, , [2023]
Descrizione fisica 1 online resource (470 pages)
Disciplina 381.3
Collana Methods and Protocols in Food Science Series
Soggetto topico Consumers - Research - Methodology
Food science - Research - Methodology
Soggetto non controllato Chemistry, Technical
Science
ISBN 9781071630006
9781071629994
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910686468803321
New York, NY : , : Humana, Springer Science+Business Media, LLC, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Converting power into chemicals and fuels : power-to-X technology for a sustainable future / / Martin Bajus
Converting power into chemicals and fuels : power-to-X technology for a sustainable future / / Martin Bajus
Autore Bajus Martin <1943->
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, , [2023]
Descrizione fisica 1 online resource (508 pages)
Disciplina 621.3126
Soggetto topico Energy storage
Energy conversion
Renewable energy sources
Soggetto non controllato Chemistry, Technical
Science
ISBN 1-394-18577-4
1-394-18426-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Converting Power into Chemicals and Fuels -- Contents -- About the Book -- Preface -- Acknowledgments -- General Literature -- Nomenclature -- Abbreviations and Acronyms -- 1 Power-to-Chemical Technology -- 1.1 Introduction -- 1.2 Power-to-Chemical Engineering -- 1.2.1 Carbon Dioxide Thermodynamics -- 1.2.2 Carbon Dioxide Aromatization Thermodynamics -- 1.2.3 Reaction Mechanism of Carbon Dioxide Methanation -- 1.2.4 Water Electrolysis Thermodynamics -- 1.2.5 Methane Pyrolysis Reaction Thermodynamic Consideration -- 1.2.5.1 The Carbon-Hydrogen System -- 1.2.6 Reaction Kinetics and Mechanism -- 1.2.7 Thermal Mechanism of Methane Pyrolysis into a Sustainable Hydrogen -- 1.2.8 Catalytic Mechanism Splitting of Methane into a Sustainable Hydrogen -- 1.2.9 Conversion of Methane over Metal Catalysts into a Sustainable Hydrogen -- 1.2.9.1 Nickel Catalysts -- 1.2.9.2 Iron Catalysts -- 1.2.9.3 Regeneration of Metal Catalysts -- 1.2.10 Conversion of Methane over Carbon Catalysts into Clean Hydrogen -- 1.2.10.1 Activity of Carbon Catalysts -- 1.2.10.2 Stability and Deactivation of Carbon Catalysts -- 1.2.10.3 Regeneration of Carbon Catalysts -- 1.2.10.4 Co-Feeding to Extend the Lifetime of Carbon Catalysts -- 1.2.11 Reactors -- 1.2.11.1 Conversion, Selectivity and Yields -- 1.2.11.2 Modelling Approach of the Structured Catalytic Reactors -- 1.2.11.3 Reactor Concept for Catalytic Carbon Dioxide Methanation -- 1.2.11.4 Monolithic Reactors -- 1.2.11.5 Mass Transfer in the Honeycomb and Slurry Bubble Column Reactor -- 1.2.11.6 Heat Transfer in Honeycomb and Slurry Bubble Column Reactors -- 1.2.11.7 Process Design -- 1.2.11.8 Comparison and Outlook -- 1.3 Potential Steps Towards Sustainable Hydrocarbon Technology: Vision and Trends -- 1.3.1 Technology Readiness Levels -- 1.3.2 A Vision for the Oil Refinery of 2030.
1.3.3 The Transition from Fuels to Chemicals -- 1.3.3.1 Crude Oil to Chemicals Investments -- 1.3.3.2 Available Crude-to-Chemicals Routes -- 1.3.4 Business Trends: Petrochemicals 2025 -- 1.3.4.1 Asia-Pacific -- 1.3.4.2 Middle East -- 1.3.4.3 United States -- 1.4 Digital Transformation -- 1.4.1 Benefits of Digital Transformation -- 1.4.2 A New Workforce and Workplace -- 1.4.3 Technology Investment -- 1.4.4 The Greening of the Downstream Industry -- 1.4.4.1 Sustainable Alkylation Technology -- 1.4.4.2 Ecofriendly Catalyst -- 1.5 RAM Modelling -- 1.5.1 RAM1 Site Model -- 1.5.2 RAM2 Plant Models -- 1.5.3 RAM3 Models -- 1.5.4 RAM Modelling Benefit -- 1.6 Conclusions -- Further Reading -- 2 The Green Shift in Power-to-Chemical Technology and Power-to-Chemical Engineering: A Framework for a Sustainable Future -- 2.1 Introduction -- 2.2 Eco-Friendly Catalyst -- 2.2.1 Development of Catalysts Supported on Carbons for Carbon Dioxide Hydrogenation -- 2.2.2 Properties of Carbon Supports -- 2.3 Hydrogen -- 2.3.1 Different Colours and Costs of Hydrogen -- 2.3.1.1 Blue Hydrogen -- 2.3.1.2 Green Hydrogen -- 2.3.1.3 Grey Hydrogen -- 2.3.1.4 Pink Hydrogen -- 2.3.1.5 Yellow Hydrogen -- 2.3.1.6 Multi-Coloured Hydrogen -- 2.3.1.7 Hydrogen Cost -- 2.4 Alternative Feedstocks -- 2.4.1 Carbon Dioxide-Derived Chemicals -- 2.5 Alternative Power-to-X-Technology -- 2.5.1 Power-to-X-Technology to Produce Electrochemicals and Electrofuels -- 2.6 Partial Oxidation of Methane -- 2.7 Biorefining -- 2.8 Sustainable Production to Advance the Circular Economy -- 2.8.1 Introduction -- 2.8.2 Circular Economy -- 2.8.2.1 Sustainability -- 2.8.2.2 Scope -- 2.8.2.3 Background of the Circular Economy -- 2.8.2.3.1 Emergence of the Idea -- 2.8.2.3.2 Moving Away from the Linear Model -- 2.8.2.3.3 Towards the Circular Economy -- 2.8.3 Circular Business Models.
2.8.4 Industries Adopting a Circular Economy -- 2.8.4.1 Minimizing Dependence on Fossil Fuels -- 2.8.4.2 Minimizing the Impact of Chemical Synthesis and Manufacturing -- 2.8.4.3 Future Research Needs in Developing a Circular Economy -- 2.9 New Chemical Technologies -- 2.9.1 Renewable Power -- Further Reading -- 3 Storage Renewable Power-to-Chemicals -- 3.1 Introduction -- 3.2 Terminology -- 3.3 Energy Storage Systems -- 3.4 World Primary Energy Consumption -- 3.4.1 2019 Briefly -- 3.4.2 Energy in 2020 -- 3.4.2.1 Not Just Green but Greening -- 3.4.2.2 For Energy, 2020 Was a Year Like No Other -- 3.4.2.3 Glasgow Climate Pact -- 3.4.2.4 Energy in 2020: What Happened and How Surprising Was It -- 3.4.2.5 How Should We Think About These Reductions -- 3.4.2.6 What Can We Learn from the COVID-induced Stress Test -- 3.4.2.7 Progress Since Paris - How Is the World Doing -- 3.5 Carbon Dioxide Emissions -- 3.5.1 Carbon Footprint -- 3.5.1.1 Climate-driven Warming -- 3.5.2 Carbon Emissions in 2020 -- 3.6 Clean Fuels ‒ the Advancement to Zero Sulfur -- 3.7 Renewables in 2019 -- 3.8 Hydroelectricity and Nuclear Energy -- 3.9 Conclusion -- Further Reading -- 4 Carbon Capture, Utilization and Storage Technologies -- 4.1 Industrial Sources of Carbon Dioxide -- 4.2 Carbon Capture, Utilization and Storage Technologies -- 4.3 Carbon Dioxide Capture -- 4.4 Developing and Deploying CCUS Technology in the Oil and Gas Industry -- 4.5 Sustainable Steel/Chemicals Production: Capturing the Carbon in the Material Value Chain -- 4.5.1 Valorisation of Steel Mill Gases -- 4.5.2 Summary and Outlook -- Further Reading -- 5 Integrated Refinery Petrochemical Complexes Including Power-to-X Technologies -- 5.1 Introduction -- 5.2 Synergies Between Refining and Petrochemical Assets -- 5.2.1 Reaching Maximum Added Value - Integrated Refining Schemes.
5.2.1.1 Fluid Catalytic Cracking Alternates -- 5.2.1.2 Hydrocracking Alternates -- 5.2.2 Comparisons and Sensitivities to Product/Utility Pricing -- 5.2.3 Options for Further Increasing the Petrochemical Value Chain -- 5.3 Carbon Dioxide Emissions -- 5.3.1 Effect of a Carbon Dioxide Tax -- 5.3.2 Crude Oil Effects -- 5.4 Summary -- 5.5 Power- to-X Technology -- 5.6 The Role of Nuclear Power -- 5.6.1 Small Nuclear Power Reactors -- 5.6.2 Conclusion -- Further Reading -- 6 Power-to-Hydrogen Technology -- 6.1 Introduction -- 6.2 Traditional and Developing Technologies for Hydrogen Production -- 6.3 Dry Reforming of Methane -- 6.4 Tri-reforming of Methane -- 6.5 Greenfield Technology Option → Low Carbon Emission Routes -- 6.5.1 Water Electrolysis -- 6.5.1.1 Alkaline Electrolysis -- 6.5.1.2 Polymer Electrolyte Membrane Electrolysis -- 6.5.1.3 Solid Oxide Electrolysis -- 6.5.2 Methane Pyrolysis -- 6.5.2.1 Process Concepts for Industrial Application -- 6.5.2.2 Perspectives of the Carbon Coproduct -- 6.5.3 Thermochemical Processes -- 6.5.4 Photocatalytic Processes -- 6.5.5 Biomass Electro-Reforming -- 6.5.6 Microorganisms -- 6.5.7 Hydrogen from Other Industrial Processes -- 6.5.8 Hydrogen Production Cost -- 6.5.9 Electrolysers -- 6.5.10 Carbon Footprint -- 6.6 Advances in Chemical Carriers for Hydrogen -- 6.6.1 Demand Drivers -- 6.6.2 Options for Hydrogen Deployment -- 6.6.3 Advances in Hydrogen Storage/Transport Technology -- 6.6.4 Global Supply Chain -- 6.6.5 Power-to-Gas Demo -- 6.6.5.1 Hydrogen Fuelling Stations -- 6.6.5.2 Pathway to Commercialization -- 6.6.5.3 Transportation Studies in North America -- 6.6.6 Future Applications -- 6.7 Ammonia Fuel Cells -- 6.7.1 Proton-Conducting Fuel Cells -- 6.7.2 Polymer Electrolyte Membrane Fuel Cells -- 6.7.3 Proton-conducting Solid Oxide Fuel Cells -- 6.7.4 Alkaline Fuel Cells.
6.7.5 Direct Ammonia Solid Oxide Fuel Cell -- 6.7.6 Equilibrium Potential and Efficiency of the Ammonia-Fed SOFC -- 6.8 Conclusions -- Further Reading -- 7 Power-to-Fuels -- 7.1 Introduction -- 7.2 Selection of Fuel Candidates -- 7.2.1 Fuel Production Processes -- 7.3 Power-to-Methane Technology -- 7.3.1 Carbon Dioxide Electrochemical Reduction -- 7.3.2 Carbon Dioxide Hydrogenation -- 7.4 Power-to-Methanol -- 7.5 Power-to-Dimethyl Ether -- 7.6 Chemical Conversion Efficiency -- 7.6.1 Exergy -- 7.6.2 Exergy Efficiency -- 7.6.3 Economic and Environmental Evaluation -- 7.6.4 Fuel Assessment -- 7.6.5 Performance of Fuel Production Processes -- 7.6.6 Process Chain Evaluation -- 7.6.7 Fuel Cost -- 7.7 Well-to-Wheel Greenhouse Gas Emissions -- 7.7.1 Environmental Impact -- 7.7.2 Infrastructure -- 7.7.3 Efficiency -- 7.7.4 Energy/Power Density -- 7.7.5 Pollutant Emissions -- 7.8 Gasoline Electrofuels -- 7.9 Diesel Electrofuels -- 7.10 Electrofuels and/or Electrochemicals -- 7.10.1 Physico-Chemical Properties -- 7.10.1.1 Density -- 7.10.1.2 Tribological Properties -- 7.10.1.3 Combustion Characteristics -- 7.10.1.4 Combustion and Emissions -- 7.10.2 Diesel Engine Efficiency -- 7.10.3 Potential of Diesel Electrofuels -- 7.11 Maturity, TRL, Production and Electrolysis Costs -- 7.11.1 Summary -- 7.12 Power-to-Liquid Technology -- 7.12.1 Power-to-Jet Fuel -- 7.12.2 Power-to-Diesel -- 7.13 Conclusion and Outlook -- Further Reading -- 8 Power-to-Light Alkenes -- 8.1 Oxidative Dehydrogenation -- 8.1.1 Carbon Dioxide as a Soft Oxidant for Catalytic Dehydrogenation -- 8.1.2 Carbon Dioxide: Oxidative Coupling of Methane -- 8.1.3 From Carbon Dioxide to Lower Olefins -- 8.1.4 Low-Carbon Production of Ethylene and Propylene -- 8.1.4.1 Energy Demand per Unit of Ethylene/Propylene Production via Methanol.
8.1.4.2 Carbon Dioxide Reduction per Unit of Ethylene/Propylene Production.
Record Nr. UNINA-9910830649403321
Bajus Martin <1943->  
Hoboken, NJ : , : John Wiley & Sons, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Crystallization of organic compounds : an industrial perspective / / Hsien-Hsin Tung [et al.]
Crystallization of organic compounds : an industrial perspective / / Hsien-Hsin Tung [et al.]
Autore Tung Hsien-Hsin <1955->
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, N.J. : , : John Wiley & Sons, Inc., , [2024]
Descrizione fisica 1 online resource (ix, 368 pages) : illustrations (some color)
Disciplina 615/.19
Soggetto topico Crystallization - Industrial applications
Pharmaceutical chemistry
Pharmaceutical industry
Soggetto non controllato Chemistry, Technical
Science
ISBN 1-119-87949-3
1-119-87947-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Introduction to Crystallization -- 1.1 Crystal Properties and Polymorphs (Chapters 2 and 3) -- 1.2 NUCLEATION AND GROWTH KINETICS (CHAPTER 4) -- 1.3 MIXING AND SCALE-UP (CHAPTER 5) -- 1.4 Critical Issues and Quality by Design (Chapter 6) -- 1.4.1 Critical Issues -- 1.4.2 Design of Experiment -- 1.5 Crystallization Process Options (Chapters 7-10) -- 1.5.1 Cooling (Chapter 7) -- 1.5.2 Evaporation Solvent (Chapter 8) -- 1.5.3 Antisolvent Addition (Chapter 9) -- 1.5.4 Reactive Crystallization (Chapter 10) -- 1.6 Downstream Operations (Chapters 11 And 12) -- 1.7 Special Applications (Chapter 13) -- Chapter 2 Properties -- 2.1 Solubility -- 2.1.1 Free Energy-Composition Phase Diagram -- 2.1.2 Temperature -- 2.1.3 Solvent -- 2.1.4 Impurities -- 2.1.5 Chemical and Physical Structure, Salt and Co-Crystal Form -- 2.1.6 Solubility Measurement and Prediction -- 2.1.7 Significance of Crystallization -- 2.2 Supersaturation, Metastable Zone, and Induction Time -- 2.2.1 Free Energy-Composition Phase Diagram -- 2.2.2 Factors Affecting Metastable Zone Width and Induction Time -- 2.2.3 Measurement and Prediction -- 2.2.4 Significance of Crystallization -- 2.3 Oil, Amorphous, and Crystalline States -- 2.3.1 Phase Diagram -- 2.3.2 Measurement -- 2.3.3 Significance to Crystallization -- 2.4 Polymorphism -- 2.4.1 Phase Diagram -- 2.4.2 Measurement and Prediction -- 2.4.3 Significance to Crystallization and Downstream Operations -- 2.5 Solvate -- 2.5.1 Phase Diagram -- 2.5.2 Measurement and Prediction -- 2.5.3 Significance to Crystallization and Downstream Operations -- 2.6 Solid Compound, Solid Solution, and Solid Mixture -- 2.6.1 Phase Diagram -- 2.6.2 Measurement and Prediction -- 2.6.3 Significance to Crystallization -- 2.7 Inclusion and Occlusion -- 2.7.1 Mechanism -- 2.7.2 Measurement.
2.7.3 Significance to Crystallization and Downstream Operations -- 2.8 Adsorption, Hygroscopicity, and Deliquesce -- 2.8.1 Phase Diagram -- 2.8.2 Measurement -- 2.8.3 Significance to Crystallization and Downstream Operations -- 2.9 Crystal Morphology -- 2.9.1 General Observations -- 2.9.2 Measurement and Prediction -- 2.9.3 Significance to Crystallization and Downstream Operations -- 2.10 Partical Size Distribution and Surface Area -- 2.10.1 Particle Distribution Definition -- 2.10.2 Measurement -- 2.10.3 Significance to Crystallization and Downstream Operations -- Chapter 3 Polymorphism -- 3.1 Phase Rule -- 3.2 Phase Transition -- 3.2.1 Enantiotropy and Monotropy -- 3.2.2 Metastable Equilibrium and Suspended Transformation -- 3.2.3 Measurement -- 3.3 Prediction of Crystal Structure and its Formation -- 3.3.1 Equilibrium Approach -- 3.3.2 Kinetic Approach -- 3.4 Selection and Screening of Crystal Forms -- 3.4.1 Selection Criteria -- 3.4.2 Candidates for Forming Salts and Co-crystals -- 3.4.3 High Throughput and Process-Based Screening -- 3.5 Examples -- EXAMPLE 3.1 -- EXAMPLE 3.2 -- EXAMPLE 3.3 -- EXAMPLE 3.4 -- EXAMPLE 3.5 -- EXAMPLE 3.6 -- EXAMPLE 3.7 -- EXAMPLE 3.8 -- EXAMPLE 3.9 -- Chapter 4 Kinetics -- 4.1 SUPERSATURATION AND RATE PROCESSES -- 4.2 Nucleation -- 4.2.1 Homogeneous Nucleation -- 4.2.2 Heterogeneous Nucleation -- 4.2.3 Secondary Nucleation -- 4.3 Crystal Growth and Agglomeration -- 4.3.1 Crystal Growth Mechanisms -- 4.3.2 Agglomeration Mechanism -- 4.3.3 Measurement of Crystal Growth Rate -- 4.3.4 Crystal Population Balance -- 4.4 Nucleate/Seed Aging and Ostwald Ripening -- 4.5 DELIVERED PRODUCT: PURITY, CYSTAL FORM, SIZE AND MORPHOLOGY, AND CHEMICAL and PHYSICAL STABILITY -- 4.6 Design of Experiment (DOE)-Model-Based Approach -- 4.7 Model-Free Feedback Control -- Chapter 5 Mixing and Crystallization -- 5.1 INTRODUCTION.
5.2 Mixing Considerations and Factors -- 5.2.1 Mixing Time -- 5.2.2 Mixing Intensity -- 5.2.3 Mixing Distribution -- 5.3 Mixing Effects on Nucleation -- 5.3.1 Primary Nucleation -- 5.3.2 Secondary Nucleation and Particle Breakage -- 5.3.3 Damkoehler Number for Nucleation -- 5.3.4 Scale-Up of Nucleation-Based Processes -- 5.4 Mixing Effects on Crystal Growth -- 5.4.1 Mass Transfer Rate -- 5.4.2 Da Number for Crystallization -- 5.4.3 Conflicting Mixing Effects -- 5.4.4 Experimentation on Mixing Effects -- 5.4.5 Effects of Mixing on PSD -- 5.5 Mixing Distribution and Scale-Up -- 5.5.1 Power -- 5.5.2 Off-Bottom Suspension -- 5.6 Crystallization Equipment -- 5.6.1 Stirred Vessels -- 5.6.2 Fluidized Bed Crystallizer -- 5.6.3 Impinging Jet Crystallizer -- 5.7 Process Design and Examples -- EXAMPLE 5.1 -- EXAMPLE 5.2 -- Chapter 6 Critical Issues and Quality by Design -- 6.1 Quality By Design -- 6.2 Basic Properties -- 6.2.1 Solubility and Crystal Forms -- 6.2.2 Particle Size and Morphology -- 6.3 Seed -- 6.3.1 Determination of Seed Form, Size, and Quantity -- 6.3.2 Effectiveness of Seeding -- 6.4 Supersaturation -- 6.4.1 Generation of Supersaturation -- 6.4.2 Oiling Out, Agglomeration/Aggregation -- 6.4.3 Nucleation -- 6.4.4 Crystal Growth -- 6.5 Mixing and Scale-Selection of Equipment and Operating Procedures -- 6.5.1 Stirred Vessels -- 6.5.2 In-line Mixers -- 6.5.3 Fluidized Bed -- 6.6 Strategic Considerations for Crystallization Process Development -- 6.7 Summary of Critical Issues -- Chapter 7 Cooling Crystallization -- 7.1 Batch Operation -- 7.1.1 Rate of Cooling -- 7.1.2 Metastable Region -- 7.1.3 Seeding Versus Spontaneous Nucleation -- 7.1.4 Mixing and Mass Transfer -- 7.1.5 Solvent -- 7.1.6 Impurities (Dissolved and Undissolved) -- 7.2 Continuous Operations -- 7.2.1 The Attraction of Continuous Processing.
7.2.2 Operating Strategy for Continuous Cooling Crystallizers -- 7.2.3 Plug Flow and Cascade Operation -- 7.2.4 Fluidized Bed Continuous Cooling Crystallizer Designs -- 7.3 Process Design-Examples -- EXAMPLE 7.1 -- EXAMPLE 7.2 -- EXAMPLE 7.3 -- EXAMPLE 7.4 -- EXAMPLE 7.5 -- EXAMPLE 7.6 -- Chapter 8 Evaporative Crystallization -- 8.1 INTRODUCTION -- 8.2 Solubility Diagrams -- 8.2.1 Increasing Solubility -- 8.2.2 Decreasing Solubility -- 8.2.3 Change in Solvent -- 8.3 FACTORS AFFECTING NUCLEATION AND GROWTH -- 8.4 Scale-Up -- 8.5 Equipment -- 8.5.1 Heat Transfer -- 8.5.2 Overconcentration -- 8.5.3 Combination of Evaporation and Cooling -- 8.6 Process Design and Examples -- EXAMPLE 8.1 -- EXAMPLE 8.2 -- EXAMPLE 8.3 -- Chapter 9 Anti-solvent Crystallization -- 9.1 Operation -- 9.1.1 Normal Mode of Addition -- 9.1.2 Reverse Addition -- 9.1.3 Simultaneous Mode of Addition -- 9.1.4 Addition Strategy -- 9.1.5 Seeding -- 9.2 IN-LINE MIXING CRYSTALLIZATION -- 9.3 Process Design and Examples -- EXAMPLE 9.1 -- EXAMPLE 9.2 -- EXAMPLE 9.3 -- EXAMPLE 9.4 -- EXAMPLE 9.5 -- EXAMPLE 9.6 -- EXAMPLE 9.7 -- Chapter 10 Reactive Crystallization -- 10.1 INTRODUCTION -- 10.1.1 Utilization -- 10.1.2 Literature -- 10.2 Control of Particle Size -- 10.2.1 Controlling for Growth -- 10.3 Key Issues in Organic Reactive Crystallization -- 10.3.1 Mixing Issues -- 10.3.2 Mixing and Growth -- 10.3.3 Induction Time and Nucleation -- 10.3.4 Supersaturation Control -- 10.3.5 Seeding -- 10.3.6 Crystal Growth -- 10.3.7 Impurities/Additives -- 10.3.8 Secondary Effects -- 10.4 Creation of Fine Particles-In-Line Reactive Crystallization -- 10.5 Process Design and Scale-Up -- EXAMPLE 10.1 -- EXAMPLE 10.2 -- EXAMPLE 10.3 -- EXAMPLE 10.4 -- Chapter 11 Filtration -- 11.1 INTRODUCTION -- 11.2 BASIC PROPERTIES -- 11.2.1 Particle Size -- 11.2.2 Filter Medium -- 11.2.3 Wash Solvents.
11.2.4 Temperature -- 11.3 KINETICS -- 11.3.1 Filtrate Concentration Profile During Filtration/Washing -- 11.3.2 Filtration and Cake Wash Protocol -- 11.3.3 Filtration Model -- 11.3.4 Settling Rate vs Filtration Rate -- 11.4 process design and scale-up -- 11.4.1 Agitated Filter Dryer -- 11.4.2 Centrifuge Filter -- 11.4.3 Other Operation Complications -- Chapter 12 Drying -- 12.1 INTRODUCTION -- 12.2 BASIC PROPERTIES -- 12.2.1 Vapor-Liquid Equilibrium -- 12.2.2 Solvation and Desolvation -- 12.2.3 Hardness and Brittleness of Solid Particles -- 12.2.4 Agglomerates and Granules of Solid Particles -- 12.3 KINETICS -- 12.3.1 Drying Profiles -- 12.3.2 Particle Fracture and Agglomeration -- 12.3.3 Inter-Relationship Between Drying Stage and Particle Behavior -- 12.4 PROCESS DESIGN AND SCALE-UP -- 12.4.1 Process Design -- 12.4.2 Scale-up -- Chapter 13 Special Applications -- 13.1 INTRODUCTION -- 13.2 CRYSTALLIZATION WITH SUPERCRITICAL FLUIDS -- 13.3 Resolution of Stereo-Isomers -- 13.3.1 Option 1: Use of a Chiral Additive to Create a Diastereoisomeric Set of Compounds -- 13.3.2 Option 2: Chiral Chemistry to Improve Reaction Chiral Selectivity of the Desired Isomer -- 13.3.3 Option 3: Kinetic and Dynamic Resolution -- 13.3.4 Option 4: Use of Chromatography, Membrane, Enzyme, or Other Separation Technology -- 13.4 WET MILLS IN CRYSTALLIZATION -- 13.5 COMPUTATIONAL FLUID DYNAMICS IN CRYSTALLIZATION -- 13.6 Solid Dispersion-Crystalline and/or Amorphous Drugs -- 13.7 Process Design and Examples -- EXAMPLE 13.1 -- EXAMPLE 13.2 -- EXAMPLE 13.3 -- EXAMPLE 13.4 -- EXAMPLE 13.5 -- EXAMPLE 13.6 -- EXAMPLE 13.7 -- References -- Index -- EULA.
Record Nr. UNINA-9910830743603321
Tung Hsien-Hsin <1955->  
Hoboken, N.J. : , : John Wiley & Sons, Inc., , [2024]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Distillation : Principles and Practice
Distillation : Principles and Practice
Autore Stichlmair Johann G
Edizione [2nd ed.]
Pubbl/distr/stampa Newark : , : American Institute of Chemical Engineers, , 2021
Descrizione fisica 1 online resource (685 pages)
Disciplina 660/.28425
Altri autori (Persone) KleinHarald
RehfeldtSebastian
Soggetto topico Molecular stills
Soggetto non controllato Chemistry, Technical
Science
ISBN 1-5231-4336-3
1-119-41468-7
1-119-41469-5
1-119-41467-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Nomenclature -- 1 Introduction -- 1.1 Principle of Distillation Separation -- 1.2 Historical -- 2 Vapor-Liquid Equilibrium -- 2.1 Basic Thermodynamic Correlations -- 2.1.1 Measures of Concentration -- 2.1.2 Equations of State (EOS) -- 2.1.3 Molar Mixing and Partial Molar State Variables -- 2.1.4 Saturation Vapor Pressure and Boiling Temperature of Pure Components -- 2.1.5 Fundamental Equation and the Chemical Potential -- 2.1.6 Gibbs-Duhem Equation and Gibbs-Helmholtz Equation -- 2.2 Calculation of Vapor-Liquid Equilibrium in Mixtures -- 2.2.1 Basic Equilibrium Conditions -- 2.2.2 Gibbs Phase Rule -- 2.2.3 Correlations for the Chemical Potential -- 2.2.4 Calculating Activity Coefficients with the Molar Excess Free Energy -- 2.2.5 Thermodynamic Consistency Check of Molar Excess Free Energy and Activity Coefficients -- 2.2.6 Iso-fugacity Condition -- 2.2.7 Fugacity of the Liquid Phase -- 2.2.8 Fugacity of the Vapor Phase -- 2.2.9 Vapor-Liquid Equilibrium Using an Equation of St -- 2.2.10 Fugacity of Pure Liquid as Standard Fugacity: Raoult's Law -- 2.2.11 Fugacity of Infinitely Diluted Component as Standard Fugacity: Henry's Law -- 2.2.12 Correlations Describing the Molar Excess Free Energy and Activity Coefficients -- 2.2.13 Using Experimental Data of Binary Mixtures for Correlations Describing the Molar Excess Free Energy and Activity Coefficients -- 2.2.14 Vapor-Liquid Equilibrium Ratio of Mixtures -- 2.2.15 Relative Volatility of Mixtures -- 2.2.16 Boiling Condition of Liquid Mixtures -- 2.2.17 Condensation (Dew Point) Condition of Vapor Mixtures -- 2.3 Binary Mixtures and Phase Diagrams -- 2.3.1 Boiling Curve Correlation -- 2.3.2 Condensation (Dew Point) Curve Correlation -- 2.3.3 (p, x, y)-Diagram -- 2.3.4 (T, x, y)-Diagram -- 2.3.5 McCabe-Thiele Diagram.
2.3.6 Boiling and Condensation Behavior of Binary Mixtures -- 2.3.7 General Aspects of Azeotropic Mixtures -- 2.3.8 Limiting Cases of Binary Mi -- 2.4 Ternary Mixtures -- 2.4.1 Boiling and Condensation Conditions of Ternary Mixtures -- 2.4.2 Triangular Diagrams -- 2.4.3 Boiling Surfaces -- 2.4.4 Condensation Surfaces -- 2.4.5 Derivation of Distillation Lines -- 2.4.6 Examples for Distillation Lines -- 3 Single-Stage Distillation and Condensation -- 3.1 Continuous Closed Distillation and Condensation -- 3.1.1 Closed Distillation of Binary Mixtures -- 3.1.2 Closed Distillation of Multicomponent Mixtures -- 3.2 Batchwise Open Distillation and Open Condensation -- 3.2.1 Binary Mixtures -- 3.2.2 Ternary Mixtures -- 3.2.3 Multicomponent Mixtures -- 3.3 Semi-continuous Single-Stage Distillation -- 3.3.1 Semi-continuous Single-Stage Distillation of Binary Mixtures -- 4 Multistage Continuous Distillation (Rectification) -- 4.1 Principles -- 4.1.1 Equilibrium-Stage Concept -- 4.1.2 Transfer-Unit Concept -- 4.1.3 Comparison of Equilibrium-Stage and Transfer-Unit Concepts -- 4.2 Multistage Distillation of Binary Mixtures -- 4.2.1 Calculations Based on Material Bal -- 4.2.2 Calculation Based on Material and Enthalpy Balances -- 4.2.3 Distillation of Binary Mixtures at Total Reflux and Reboil -- 4.2.4 Distillation of Binary Mixtures at Minimum Reflux and Reboil -- 4.2.5 Energy Requirement for Distillation of Binary Mixtures -- 4.3 Multistage Distillation of Ternary Mixtures -- 4.3.1 Calculations Based on Material Balances -- 4.3.2 Distillation of Ternary Mixtures at Total Reflux and Reboil -- 4.3.3 Distillation of Ternary Mixtures at Minimum Reflux and Reboil -- 4.3.4 Energy Requirement of Ternary Distillation -- 4.4 Multistage Distillation of Multicomponent Mixtures -- 4.4.1 Rigorous Column Simulation -- 5 Reactive Distillation, Catalytic Distillation.
5.1 Fundamentals -- 5.1.1 Chemical Equilibrium -- 5.1.2 Stoichiometric Lines -- 5.1.3 Non-reactive and Reactive Distillation Lines -- 5.1.4 Reactive Azeotropes -- 5.2 Topology of Reactive Distillation Lines -- 5.2.1 Reactions in Ternary Systems -- 5.2.2 Reactions in Ternary Systems with Inert Components -- 5.2.3 Reactions with Side Products -- 5.2.4 Reactions in Quaternary Systems -- 5.3 Topology of Reactive Distillation Processes -- 5.3.1 Single Product Reactions -- 5.3.2 Decomposition Reactions -- 5.3.3 Side Reactions -- 5.4 Arrangement of Catalysts in Columns -- 5.4.1 Homogeneous Catalyst -- 5.4.2 Heterogeneous Catalyst -- 6 Multistage Batch Distillation -- 6.1 Batch Distillation of Binary Mixtures -- 6.1.1 Operation with Constant Reflux -- 6.1.2 Operation with Constant Distillate Composition -- 6.1.3 Operation with Minimum Energy Input -- 6.1.4 Comparison of Energy Requirement for Different Modes of Distillation -- 6.2 Batch Distillation of Ternary Mixtures -- 6.2.1 Zeotropic Mixtures -- 6.2.2 Azeotropic Mixtures -- 6.3 Batch Distillation of Multicomponent Mixtures -- 6.4 Influence of Column Liquid Hold-up on Batch Distillation -- 6.5 Processes for Separating Zeotropic Mixtures by Batch Distillation -- 6.5.1 Total Slop Cut Recycling -- 6.5.2 Binary Distillation of the Accumulated Slop Cuts -- 6.5.3 Recycling of the Slop Cuts at the Appropriate Time -- 6.5.4 Cyclic Operation -- 6.6 Processes for Separating Azeotropic Mixtures by Batch Distillation -- 6.6.1 Processes in One Distillation Field -- 6.6.2 Processes in Two Distillation Fields -- 6.6.3 Process Simplifications -- 6.6.4 Hybrid Processes -- 7 Energy Economization in Distillation -- 7.1 Energy Requirement of Single Columns -- 7.1.1 Reduction of Energy Requirement -- 7.1.2 Reduction of Exergy Losses -- 7.2 Optimal Separation Sequences of Ternary Distillation.
7.2.1 Process and Energy Requirement of the a-Path -- 7.2.2 Process and Energy Requirement of the c-Path -- 7.2.3 Process and Energy Requirement of the Preferred a=c-Path -- 7.3 Modifications of the Basic Processes -- 7.3.1 Material (Direct) Coupling of Columns -- 7.3.2 Processes with Side Columns -- 7.3.3 Thermal (Indirect) Coupling of Columns -- 7.4 Design of Heat Exchanger Networks -- 7.4.1 Optimum Heat Exchanger Networks -- 7.4.2 Modifying the Optimum Heat Exchanger Network -- 7.4.3 Dual Flow Heat Exchanger Networks -- 7.4.4 Process Modifications -- 8 Industrial Distillation Processes -- 8.1 Constraints for Industrial Distillation Processes -- 8.1.1 Feasible Temperatures -- 8.1.2 Feasible Pressures -- 8.1.3 Feasible Dimensions of Columns -- 8.2 Fractionation of Binary Mixtures -- 8.2.1 Recycling of Diluted Sulfuric Acid -- 8.2.2 Ammonia Recovery from Wastewater -- 8.2.3 Hydrogen Chloride Recovery from Inert Gases -- 8.2.4 Linde Process for Air Separation -- 8.2.5 Process Water Purification -- 8.2.6 Steam Distillation -- 8.3 Fractionation of Multicomponent Zeotropic Mixtures -- 8.3.1 Separation Paths -- 8.3.2 Processes with Side Columns -- 8.4 Fractionation of Heterogeneous Azeotropic Mixtures -- 8.5 Fractionation of Azeotropic Mixtures by Pressure Swing Processes -- 8.6 Fractionation of Azeotropic Mixtures by Addition of an Entrainer -- 8.6.1 Processes for Systems Without Distillation Boundary -- 8.6.2 Processes for Systems with Distillation Boundary -- 8.6.3 Hybrid Processes -- 8.7 Industrial Processes of Reactive Distillation -- 8.7.1 Synthesis of MTBE -- 8.7.2 Synthesis of Mono-ethylene Glycol -- 8.7.3 Synthesis of TAME -- 8.7.4 Synthesis of Methyl Acetate -- 9 Design of Mass Transfer Equipment -- 9.1 Types of Design -- 9.1.1 Tray Columns -- 9.1.2 Packed Columns -- 9.1.3 Criteria for Use of Tray or Packed Columns -- 9.2 Design of Tray Columns.
9.2.1 Design Parameters of Tray Columns -- 9.2.2 Operating Region of Tray Columns -- 9.2.3 Two-Phase Flow on Trays -- 9.2.4 Mass Transfer in the Two-Phase Layer on Column Trays -- 9.3 Design of Packed Columns -- 9.3.1 Design Parameters of Packed Columns -- 9.3.2 Operating Region of Packed Columns -- 9.3.3 Two-Phase Flow in Packed Columns -- 9.3.4 Mass Transfer in Packed Columns -- 9.A Appendix: Pressure Drop in Packed Beds -- 10 Control of Distillation Processes -- 10.1 Control Loops -- 10.1.1 Single Control Loop -- 10.1.2 Ratio Control Loop -- 10.1.3 Disturbance Feedforward Control Loop -- 10.1.4 Cascade Control Loop -- 10.2 Single Control Tasks for Distillation Columns -- 10.2.1 Liquid Level Control -- 10.2.2 Split Stream Control -- 10.2.3 Pressure Control -- 10.2.4 Product Concentration Control -- 10.3 Basic Control Configurations of Distillation Columns -- 10.3.1 Basic Control Systems Without Composition Control -- 10.3.2 One-Point Composition Control Configurations -- 10.3.3 Two-Point Composition Control Configurations -- 10.4 Application Ranges of the Basic Control Configurations -- 10.4.1 Impact of Split Parameters According to Split Rule 2 -- 10.4.2 Sharp Separations of Ideal Mixtures with Constant Relative Volatility at Minimum Reflux and Boilup Ratio -- 10.4.3 Extended Application Ranges of the Basic Control Configurations -- 10.5 Examples for Control Configurations of Distillation Processes -- 10.5.1 Azeotropic Distillation Process by Pressure Change -- 10.5.2 Distillation Process for Air Separation -- 10.5.3 Distillation Process with a Main and a Side Colum -- 10.5.4 Azeotropic Distillation Process by Using an Entrainer -- 10.6 Control Configurations for Batch Distillation Processes -- Index -- EULA.
Altri titoli varianti Distillation
Record Nr. UNINA-9910830617103321
Stichlmair Johann G  
Newark : , : American Institute of Chemical Engineers, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Diverse Hydrogen Sources for Biomass-derivatives Conversion : Reaction and Mechanism / / by Zhibao Huo
Diverse Hydrogen Sources for Biomass-derivatives Conversion : Reaction and Mechanism / / by Zhibao Huo
Autore Huo Zhibao
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (206 pages)
Disciplina 665.81
Soggetto topico Hydrogen as fuel
Green chemistry
Catalysis
Energy policy
Energy and state
Hydrogen Energy
Green Chemistry
Energy Policy, Economics and Management
Soggetto non controllato Chemistry
Chemistry, Technical
Energy Industries
Science
Business & Economics
ISBN 9789819916733
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Selective Hydrogenation of Levulinate Esters to 1,4-pentanediol Using a Ternary Skeletal CuAlZn Catalyst -- Catalytic Hydrogenation of Ethyl Levulinate into γ-Valerolactone over Raney Cu Catalyst -- Catalytic Transfer Hydrogenation of Levulinate Ester into γ-Valerolactone over Ternary Cu/ZnO/Al2O3 Catalyst -- Catalytic Transfer Hydrogenation of Ethyl Levulinate into γ-Valerolactone over Air-stable Skeletal Cobalt Catalyst -- Catalytic Transfer Hydrogenation of 5-Hydroxymethylfurfural into 2,5-Dimethyl Furan over CuO/MgO/ZrO2 Catalyst -- Chemoselective Synthesis of Propionic Acid from Biomass and Lactic Acid over a Cobalt Catalyst in Aqueous Media -- A Novel Approach for 1,2-Propylene Glycol Production from Biomass-derived Lactic Acid -- Catalytic Conversion of Ethyl Lactate to 1,2-Propanediol over CuO -- Highly Selective Hydrothermal Production of Cyclohexanol from Biomass-derived Cyclohexanone over Cu Powder -- Efficient Conversion of Dimethyl Phthalate to Phthalide over CuO in Aqueous Media -- Heterogeneous Cu2O-mediated Ethylene Glycol Production from Dimethyl Oxalate -- Highly Efficient Conversion of Biomass-derived Glycolide to Ethylene Glycol over CuO in Water -- A Supported Ni Catalyst Produced from Ni-Al Hydrotalcite-like Precursor for Reduction of Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol by NaBH4 in Water.
Record Nr. UNINA-9910726294703321
Huo Zhibao  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electrolytic production of Al-Si alloys : theory and technology / / Dmitriy Pruttskov, Aleksander Andriiko, Aleksei Kirichenko
Electrolytic production of Al-Si alloys : theory and technology / / Dmitriy Pruttskov, Aleksander Andriiko, Aleksei Kirichenko
Autore Pruttskov Dmitriy
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (xviii, 98 pages) : illustrations (some color)
Disciplina 620.186
669.722
Collana Monographs in Electrochemistry
Soggetto topico Aluminum alloys
Aluminum silicates
Soggetto non controllato Chemistry, Physical And Theoretical
Materials
Chemistry, Technical
Science
Technology & Engineering
ISBN 3-031-29249-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Exchange reactions in Na3AlF6–Al2O3–SiO2 melts -- Kinetics and mechanism of Si(IV) electroreduction in Na3AlF6–Al2O3–SiO2 melts on Al cathode -- Current Yield -- Industrial Tests -- Modern Research Trends.
Record Nr. UNINA-9910725098303321
Pruttskov Dmitriy  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Gas Measurement Technology in Theory and Practice : Measuring Instruments, Sensors, Applications / / by Gerhard Wiegleb
Gas Measurement Technology in Theory and Practice : Measuring Instruments, Sensors, Applications / / by Gerhard Wiegleb
Autore Wiegleb Gerhard
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Wiesbaden : , : Springer Fachmedien Wiesbaden : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (1303 pages)
Disciplina 910.02
Soggetto topico Electronics
Control engineering
Electronic circuits
Measurement
Measuring instruments
Electronics and Microelectronics, Instrumentation
Control and Systems Theory
Electronic Circuits and Systems
Measurement Science and Instrumentation
Soggetto non controllato Chemistry, Technical
Science
ISBN 9783658372323
9783658372316
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Physical properties of gases -- gas sensors -- optical gas measurement -- humidity measurement -- flow measurement -- calibration and qualification -- dust measurement -- gas sensors in application systems.
Record Nr. UNINA-9910726287403321
Wiegleb Gerhard  
Wiesbaden : , : Springer Fachmedien Wiesbaden : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microstructure Atlas of P22 Steel / by Rajat K. Roy, Anil K. Das, Avijit Kumar Metya, Avijit Mondal, Ashis Kumar Panda, M. Ghosh, Satish Chand, Sarmishtha Palit Sagar, Swapan Kumar Das, Amit Chhabra, Swaminathan Jaganathan, Amitava Mitra
Microstructure Atlas of P22 Steel / by Rajat K. Roy, Anil K. Das, Avijit Kumar Metya, Avijit Mondal, Ashis Kumar Panda, M. Ghosh, Satish Chand, Sarmishtha Palit Sagar, Swapan Kumar Das, Amit Chhabra, Swaminathan Jaganathan, Amitava Mitra
Autore Roy Rajat K
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (117 pages)
Disciplina 620.1799
Altri autori (Persone) DasAnil K
MetyaAvijit Kumar
MondalAvijit
PandaAshis Kumar
GhoshM
ChandSatish
SagarSarmishtha Palit
DasSwapan Kumar
ChhabraAmit
Soggetto topico Metals
Building materials
Production engineering
Materials - Fatigue
Metals and Alloys
Steel, Light Metal
Thermal Process Engineering
Materials Fatigue
Soggetto non controllato Civil Engineering
Chemistry, Technical
Materials
Technology & Engineering
Science
ISBN 981-9901-17-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Metallurgy of P22 steel -- As-received pipe details -- Creep testing under different conditions -- Micrographs description -- Effect of creep exposure on material behaviours -- Supplements.
Record Nr. UNINA-9910728939303321
Roy Rajat K  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui