Multiplicative ideal theory and factorization theory : commutative and non-commutative perspectives / Scott Chapman ... [et al.] editors |
Pubbl/distr/stampa | [Cham], : Springer, 2016 |
Descrizione fisica | XIV, 407 p. : ill. ; 24 cm |
Soggetto topico |
14H20 - Singularities of curves, local rings [MSC 2020]
11R11 - Quadratic extensions [MSC 2020] 13Gxx - Integral domains [MSC 2020] 13A30 - Associated graded rings of ideals (rees ring, form ring), analytic spread and related topics [MSC 2020] 13C10 - Projective and free modules and ideals in commutative rings [MSC 2020] 13H10 - Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) [MSC 2020] 13F05 - Dedekind, Prüfer, Krull and Mori rings and their generalizations [MSC 2020] 20M14 - Commutative semigroups [MSC 2020] |
Soggetto non controllato |
Atomic domain
Catenary degree Class semigroup Coherent domain Commutative ring theory Dedekind domains Factorization theory HFD Krull domain Local tameness Multiplicative ideal theory Non-commutative algebra Pseudovaluation domain Quasi finite semigroup Spectral space Tame degree Valuation ring Weakly C-monoid Zariski-Riemann space |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0115010 |
[Cham], : Springer, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Multiplicative ideal theory and factorization theory : commutative and non-commutative perspectives / Scott Chapman ... [et al.] editors |
Pubbl/distr/stampa | [Cham], : Springer, 2016 |
Descrizione fisica | XIV, 407 p. : ill. ; 24 cm |
Soggetto topico |
11R11 - Quadratic extensions [MSC 2020]
13A30 - Associated graded rings of ideals (rees ring, form ring), analytic spread and related topics [MSC 2020] 13C10 - Projective and free modules and ideals in commutative rings [MSC 2020] 13F05 - Dedekind, Prüfer, Krull and Mori rings and their generalizations [MSC 2020] 13Gxx - Integral domains [MSC 2020] 13H10 - Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) [MSC 2020] 14H20 - Singularities of curves, local rings [MSC 2020] 20M14 - Commutative semigroups [MSC 2020] |
Soggetto non controllato |
Atomic domain
Catenary degree Class semigroup Coherent domain Commutative ring theory Dedekind domains Factorization theory HFD Krull domain Local tameness Multiplicative ideal theory Non-commutative algebra Pseudovaluation domain Quasi finite semigroup Spectral space Tame degree Valuation ring Weakly C-monoid Zariski-Riemann space |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00115010 |
[Cham], : Springer, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
The Characterization of Finite Elasticities : Factorization Theory in Krull Monoids via Convex Geometry / David J. Grynkiewicz |
Autore | Grynkiewicz, David J. |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | xii, 282 p. : ill. ; 24 cm |
Soggetto topico |
20-XX - Group theory and generalizations [MSC 2020]
13-XX - Commutative algebra [MSC 2020] 52-XX - Convex and discrete geometry [MSC 2020] 05-XX - Combinatorics [MSC 2020] 11B75 - Other combinatorial number theory [MSC 2020] 13A05 - Divisibility and factorizations in commutative rings [MSC 2020] 52A20 - Convex sets in $n$ dimensions (including convex hypersurfaces) [MSC 2020] 20M14 - Commutative semigroups [MSC 2020] 11B30 - Arithmetic combinatorics; higher degree uniformity [MSC 2020] 20M12 - Ideal theory for semigroups [MSC 2020] |
Soggetto non controllato |
Carathéordory’s Theorem
Catenary degree Convex Cone Delta Set Elasticity Factorization Infinite Subsets of Lattice Points Krull Monoid Krull domain Lattice Minimal Positive Basis Positive Basis Primitive Partition Identities Sets of lengths Simplicial Fan Structure Theorem for Unions Transfer Krull Domain Well-quasi-ordering Zero-sum Zero-sum Sequence |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0260779 |
Grynkiewicz, David J. | ||
Cham, : Springer, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
The Characterization of Finite Elasticities : Factorization Theory in Krull Monoids via Convex Geometry / David J. Grynkiewicz |
Autore | Grynkiewicz, David J. |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | xii, 282 p. : ill. ; 24 cm |
Soggetto topico |
05-XX - Combinatorics [MSC 2020]
11B30 - Arithmetic combinatorics; higher degree uniformity [MSC 2020] 11B75 - Other combinatorial number theory [MSC 2020] 13-XX - Commutative algebra [MSC 2020] 13A05 - Divisibility and factorizations in commutative rings [MSC 2020] 20-XX - Group theory and generalizations [MSC 2020] 20M12 - Ideal theory for semigroups [MSC 2020] 20M14 - Commutative semigroups [MSC 2020] 52-XX - Convex and discrete geometry [MSC 2020] 52A20 - Convex sets in $n$ dimensions (including convex hypersurfaces) [MSC 2020] |
Soggetto non controllato |
Carathéordory’s Theorem
Catenary degree Convex Cone Delta Set Elasticity Factorization Infinite Subsets of Lattice Points Krull Monoid Krull domain Lattice Minimal Positive Basis Positive Basis Primitive Partition Identities Sets of lengths Simplicial Fan Structure Theorem for Unions Transfer Krull Domain Well-quasi-ordering Zero-sum Zero-sum Sequence |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00260779 |
Grynkiewicz, David J. | ||
Cham, : Springer, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|