top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Multiplicative ideal theory and factorization theory : commutative and non-commutative perspectives / Scott Chapman ... [et al.] editors
Multiplicative ideal theory and factorization theory : commutative and non-commutative perspectives / Scott Chapman ... [et al.] editors
Pubbl/distr/stampa [Cham], : Springer, 2016
Descrizione fisica XIV, 407 p. : ill. ; 24 cm
Soggetto topico 14H20 - Singularities of curves, local rings [MSC 2020]
11R11 - Quadratic extensions [MSC 2020]
13Gxx - Integral domains [MSC 2020]
13A30 - Associated graded rings of ideals (rees ring, form ring), analytic spread and related topics [MSC 2020]
13C10 - Projective and free modules and ideals in commutative rings [MSC 2020]
13H10 - Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) [MSC 2020]
13F05 - Dedekind, Prüfer, Krull and Mori rings and their generalizations [MSC 2020]
20M14 - Commutative semigroups [MSC 2020]
Soggetto non controllato Atomic domain
Catenary degree
Class semigroup
Coherent domain
Commutative ring theory
Dedekind domains
Factorization theory
HFD
Krull domain
Local tameness
Multiplicative ideal theory
Non-commutative algebra
Pseudovaluation domain
Quasi finite semigroup
Spectral space
Tame degree
Valuation ring
Weakly C-monoid
Zariski-Riemann space
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0115010
[Cham], : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Multiplicative ideal theory and factorization theory : commutative and non-commutative perspectives / Scott Chapman ... [et al.] editors
Multiplicative ideal theory and factorization theory : commutative and non-commutative perspectives / Scott Chapman ... [et al.] editors
Pubbl/distr/stampa [Cham], : Springer, 2016
Descrizione fisica XIV, 407 p. : ill. ; 24 cm
Soggetto topico 11R11 - Quadratic extensions [MSC 2020]
13A30 - Associated graded rings of ideals (rees ring, form ring), analytic spread and related topics [MSC 2020]
13C10 - Projective and free modules and ideals in commutative rings [MSC 2020]
13F05 - Dedekind, Prüfer, Krull and Mori rings and their generalizations [MSC 2020]
13Gxx - Integral domains [MSC 2020]
13H10 - Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) [MSC 2020]
14H20 - Singularities of curves, local rings [MSC 2020]
20M14 - Commutative semigroups [MSC 2020]
Soggetto non controllato Atomic domain
Catenary degree
Class semigroup
Coherent domain
Commutative ring theory
Dedekind domains
Factorization theory
HFD
Krull domain
Local tameness
Multiplicative ideal theory
Non-commutative algebra
Pseudovaluation domain
Quasi finite semigroup
Spectral space
Tame degree
Valuation ring
Weakly C-monoid
Zariski-Riemann space
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00115010
[Cham], : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
The Characterization of Finite Elasticities : Factorization Theory in Krull Monoids via Convex Geometry / David J. Grynkiewicz
The Characterization of Finite Elasticities : Factorization Theory in Krull Monoids via Convex Geometry / David J. Grynkiewicz
Autore Grynkiewicz, David J.
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xii, 282 p. : ill. ; 24 cm
Soggetto topico 20-XX - Group theory and generalizations [MSC 2020]
13-XX - Commutative algebra [MSC 2020]
52-XX - Convex and discrete geometry [MSC 2020]
05-XX - Combinatorics [MSC 2020]
11B75 - Other combinatorial number theory [MSC 2020]
13A05 - Divisibility and factorizations in commutative rings [MSC 2020]
52A20 - Convex sets in $n$ dimensions (including convex hypersurfaces) [MSC 2020]
20M14 - Commutative semigroups [MSC 2020]
11B30 - Arithmetic combinatorics; higher degree uniformity [MSC 2020]
20M12 - Ideal theory for semigroups [MSC 2020]
Soggetto non controllato Carathéordory’s Theorem
Catenary degree
Convex Cone
Delta Set
Elasticity
Factorization
Infinite Subsets of Lattice Points
Krull Monoid
Krull domain
Lattice
Minimal Positive Basis
Positive Basis
Primitive Partition Identities
Sets of lengths
Simplicial Fan
Structure Theorem for Unions
Transfer Krull Domain
Well-quasi-ordering
Zero-sum
Zero-sum Sequence
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0260779
Grynkiewicz, David J.  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
The Characterization of Finite Elasticities : Factorization Theory in Krull Monoids via Convex Geometry / David J. Grynkiewicz
The Characterization of Finite Elasticities : Factorization Theory in Krull Monoids via Convex Geometry / David J. Grynkiewicz
Autore Grynkiewicz, David J.
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xii, 282 p. : ill. ; 24 cm
Soggetto topico 05-XX - Combinatorics [MSC 2020]
11B30 - Arithmetic combinatorics; higher degree uniformity [MSC 2020]
11B75 - Other combinatorial number theory [MSC 2020]
13-XX - Commutative algebra [MSC 2020]
13A05 - Divisibility and factorizations in commutative rings [MSC 2020]
20-XX - Group theory and generalizations [MSC 2020]
20M12 - Ideal theory for semigroups [MSC 2020]
20M14 - Commutative semigroups [MSC 2020]
52-XX - Convex and discrete geometry [MSC 2020]
52A20 - Convex sets in $n$ dimensions (including convex hypersurfaces) [MSC 2020]
Soggetto non controllato Carathéordory’s Theorem
Catenary degree
Convex Cone
Delta Set
Elasticity
Factorization
Infinite Subsets of Lattice Points
Krull Monoid
Krull domain
Lattice
Minimal Positive Basis
Positive Basis
Primitive Partition Identities
Sets of lengths
Simplicial Fan
Structure Theorem for Unions
Transfer Krull Domain
Well-quasi-ordering
Zero-sum
Zero-sum Sequence
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00260779
Grynkiewicz, David J.  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui