Vai al contenuto principale della pagina

Remote Sensing in Agriculture: State-of-the-Art



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Borgogno-Mondino Enrico Visualizza persona
Titolo: Remote Sensing in Agriculture: State-of-the-Art Visualizza cluster
Pubblicazione: Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica: 1 online resource (220 p.)
Soggetto topico: Environmental science, engineering and technology
History of engineering and technology
Technology: general issues
Soggetto non controllato: alpha angle
anisotropy
apple orchard damage
biomass
CDL
corn
crop height
crop management
crop Monitoring
crop water stress monitoring
crop yield prediction
cross-scale
data blending
digital number (DN)
DJI Phantom 4 Multispectral (P4M)
economic loss
entropy
feature selection
field phenotyping
gap-filling
Hidden Markov Random Field
HMRF
hyperspectral imaging
insurance support
Landsat
lodging
MODIS
northern Mongolia
oasis crop type mapping
Parrot Sequoia (Sequoia)
plant disease detection
polarimetric decomposition
precision agriculture (PA)
random forest (RF)
recursive feature increment (RFI)
red-edge spectral bands and indices
reflectance
remote sensing (RS)
remote sensing indices
SAR
Sentinel-1
Sentinel-1 and 2 integration
soil moisture Karnataka India
soil moisture semi-empirical model
soybean
spatial resolution
spectral angle mapper
spring wheat
statistically homogeneous pixels (SHPs)
storm damage mapping
support vector machine
support vector regression
Synthetic Aperture Radar
synthetic aperture radar (SAR)
thermal infrared (TIR)
thermal UAV RS
UAV
UAV-based LiDAR
unmanned aerial vehicles (UAVs)
vegetation index (VI)
vegetation status monitoring
volumetric soil moisture
winter wheat
yellow rust
yield estimation
Persona (resp. second.): TarantinoEufemia
CapolupoAlessandra
Borgogno-MondinoEnrico
Sommario/riassunto: The Special Issue on "Remote Sensing in Agriculture: State-of-the-Art" gives an exhaustive overview of the ongoing remote sensing technology transfer into the agricultural sector. It consists of 10 high-quality papers focusing on a wide range of remote sensing models and techniques to forecast crop production and yield, to map agricultural landscape and to evaluate plant and soil biophysical features. Satellite, RPAS, and SAR data were involved. This preface describes shortly each contribution published in such Special Issue.
Altri titoli varianti: Remote Sensing in Agriculture
Titolo autorizzato: Remote Sensing in Agriculture: State-of-the-Art  Visualizza cluster
ISBN: 3-0365-5484-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910637779903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui