top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bayesian Optimization with Application to Computer Experiments / Tony Pourmohamad, Herbert K. H. Lee
Bayesian Optimization with Application to Computer Experiments / Tony Pourmohamad, Herbert K. H. Lee
Autore Pourmohamad, Tony
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica x, 104 p. : ill. ; 24 cm
Altri autori (Persone) Lee, Herbert K. H.
Soggetto topico 68-XX - Computer science [MSC 2020]
62-XX - Statistics [MSC 2020]
Soggetto non controllato Bayesian Inference
Bayesian Network
Black box optimization
Computer models
Constrained optimization
Gaussian processes
Network models
Probability and Statistics in Computer Science
Sequential experimental design
Simulator
Surrogate modeling
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0274590
Pourmohamad, Tony  
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Bayesian Optimization with Application to Computer Experiments / Tony Pourmohamad, Herbert K. H. Lee
Bayesian Optimization with Application to Computer Experiments / Tony Pourmohamad, Herbert K. H. Lee
Autore Pourmohamad, Tony
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica x, 104 p. : ill. ; 24 cm
Altri autori (Persone) Lee, Herbert K. H.
Soggetto topico 62-XX - Statistics [MSC 2020]
68-XX - Computer science [MSC 2020]
Soggetto non controllato Bayesian Inference
Bayesian Network
Black box optimization
Computer models
Constrained optimization
Gaussian processes
Network models
Probability and Statistics in Computer Science
Sequential experimental design
Simulator
Surrogate modeling
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00274590
Pourmohamad, Tony  
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Black Box Optimization, Machine Learning, and No-Free Lunch Theorems / Panos M. Pardalos, Varvara Rasskazova, Michael N. Vrahatis editors
Black Box Optimization, Machine Learning, and No-Free Lunch Theorems / Panos M. Pardalos, Varvara Rasskazova, Michael N. Vrahatis editors
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica x, 388 p. : ill. ; 24 cm
Soggetto topico 68-XX - Computer science [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
00B15 - Collections of articles of miscellaneous specific interest [MSC 2020]
90-XX - Operations research, mathematical programming [MSC 2020]
90C59 - Approximation methods and heuristics in mathematical programming [MSC 2020]
Soggetto non controllato Black box optimization
Data driven computation
Data sciences problems
Deep Learning
Fuzzy Optimization
Machine learning
No-free lunch theorems
Non-free theorems in machine learning
Non-free theorems in optimization
Stochastic Optimization
Tuning algorithms
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0274601
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Black Box Optimization, Machine Learning, and No-Free Lunch Theorems / Panos M. Pardalos, Varvara Rasskazova, Michael N. Vrahatis editors
Black Box Optimization, Machine Learning, and No-Free Lunch Theorems / Panos M. Pardalos, Varvara Rasskazova, Michael N. Vrahatis editors
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica x, 388 p. : ill. ; 24 cm
Soggetto topico 00B15 - Collections of articles of miscellaneous specific interest [MSC 2020]
68-XX - Computer science [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
90-XX - Operations research, mathematical programming [MSC 2020]
90C59 - Approximation methods and heuristics in mathematical programming [MSC 2020]
Soggetto non controllato Black box optimization
Data driven computation
Data sciences problems
Deep Learning
Fuzzy Optimization
Machine learning
No-free lunch theorems
Non-free theorems in machine learning
Non-free theorems in optimization
Stochastic Optimization
Tuning algorithms
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00274601
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui