top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Handbook of vascular biometrics / / editors, Andreas Uhl [et al.]
Handbook of vascular biometrics / / editors, Andreas Uhl [et al.]
Autore Uhl Andreas
Edizione [1st edition 2020.]
Pubbl/distr/stampa Cham, : Springer Nature, 2020
Descrizione fisica 1 online resource (XVIII, 533 p. 197 illus., 149 illus. in color.)
Disciplina 570.15195
Collana Advances in Computer Vision and Pattern Recognition
Soggetto topico Biometric identification
Soggetto non controllato Computer science
Biometrics (Biology)
Computer security
User interfaces (Computer systems)
ISBN 3-030-27731-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. State of the Art in Vascular Biometrics -- 2. A High Quality Finger Vein Dataset Collected using a Custom Designed Capture Device -- 3. Open Vein - An Open Source Modular Multi-Purpose Finger-vein Scanner Design -- 4. An Available Open Source Vein Recognition Framework -- 5. Use Case of Palm Vein Authentication -- 6. Evolution of Finger Vein Biometric Devices in Terms of Usability. 7. Towards Understanding Acquisition Conditions Influencing Finger-Vein Recognition -- 8. Improved CNN-Segmentation based Finger-Vein Recognition Using Automatically Generated and Fused Training Labels -- 9. Efficient Identification in Large-Scale Vein Recognition Systems using Spectral Minutiae Representations -- 10. Different Views on the Finger - Score Level Fusion in Multi-Perspective vein Recognition.
Record Nr. UNISA-996465351303316
Uhl Andreas  
Cham, : Springer Nature, 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Handbook of vascular biometrics / / editors, Andreas Uhl [et al.]
Handbook of vascular biometrics / / editors, Andreas Uhl [et al.]
Autore Uhl Andreas
Edizione [1st edition 2020.]
Pubbl/distr/stampa Cham, : Springer Nature, 2020
Descrizione fisica 1 online resource (XVIII, 533 p. 197 illus., 149 illus. in color.)
Disciplina 570.15195
006.2483
Collana Advances in Computer Vision and Pattern Recognition
Soggetto topico Biometric identification
Soggetto non controllato Computer science
Biometrics (Biology)
Computer security
User interfaces (Computer systems)
ISBN 3-030-27731-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. State of the Art in Vascular Biometrics -- 2. A High Quality Finger Vein Dataset Collected using a Custom Designed Capture Device -- 3. Open Vein - An Open Source Modular Multi-Purpose Finger-vein Scanner Design -- 4. An Available Open Source Vein Recognition Framework -- 5. Use Case of Palm Vein Authentication -- 6. Evolution of Finger Vein Biometric Devices in Terms of Usability. 7. Towards Understanding Acquisition Conditions Influencing Finger-Vein Recognition -- 8. Improved CNN-Segmentation based Finger-Vein Recognition Using Automatically Generated and Fused Training Labels -- 9. Efficient Identification in Large-Scale Vein Recognition Systems using Spectral Minutiae Representations -- 10. Different Views on the Finger - Score Level Fusion in Multi-Perspective vein Recognition.
Record Nr. UNINA-9910366659703321
Uhl Andreas  
Cham, : Springer Nature, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui