A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions / Jean-Luc Marichal, Naïm Zenaïdi |
Autore | Marichal, Jean-Luc |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | xviii, 323 p. : ill. ; 24 cm |
Altri autori (Persone) | Zenaïdi, Naïm |
Soggetto non controllato |
Binet's Function
Bohr-Mollerup's Theorem Difference equations Euler Product Form Euler's Constant Euler's Infinite Product Euler's Reflection Formula Gamma Function Gauss Multiplication Formula Gauss' Limit Generalized Stieltjes Constants Higher Order Convexity Hurwitz zeta function Polygamma Functions Principal Indefinite Sums Raabe's Formula Stirling's Formula Weierstrass' Infinite Product |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0276773 |
Marichal, Jean-Luc | ||
Cham, : Springer, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions / Jean-Luc Marichal, Naïm Zenaïdi |
Autore | Marichal, Jean-Luc |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | xviii, 323 p. : ill. ; 24 cm |
Altri autori (Persone) | Zenaïdi, Naïm |
Soggetto topico |
26A51 - Convexity of real functions in one variable, generalizations [MSC 2020]
33B15 - Gamma, beta and polygamma functions [MSC 2020] 33B20 - Incomplete beta and gamma functions (error functions, probability integral, Fresnel integrals) [MSC 2020] 39A06 - Linear difference equations [MSC 2020] 39A60 - Applications of difference equations [MSC 2020] 39B22 - Functional equations for real functions [MSC 2020] |
Soggetto non controllato |
Binet's Function
Bohr-Mollerup's Theorem Difference equations Euler Product Form Euler's Constant Euler's Infinite Product Euler's Reflection Formula Gamma Function Gauss Multiplication Formula Gauss' Limit Generalized Stieltjes Constants Higher Order Convexity Hurwitz zeta function Polygamma Functions Principal Indefinite Sums Raabe's Formula Stirling's Formula Weierstrass' Infinite Product |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00276773 |
Marichal, Jean-Luc | ||
Cham, : Springer, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
A generalization of Bohr-Mollerup's theorem for higher order convex functions / / Jean-Luc Marichal, Naïm Zenaïdi |
Autore | Marichal Jean-Luc |
Pubbl/distr/stampa | Cham, : Springer Nature, 2022 |
Descrizione fisica | 1 online resource (xviii, 323 pages) |
Altri autori (Persone) | ZenaïdiNaïm |
Collana | Developments in mathematics |
Soggetto topico |
Convex functions
Gamma functions |
Soggetto non controllato |
Difference Equation
Higher Order Convexity Bohr-Mollerup's Theorem Principal Indefinite Sums Gauss' Limit Euler Product Form Raabe's Formula Binet's Function Stirling's Formula Euler's Infinite Product Euler's Reflection Formula Weierstrass' Infinite Product Gauss Multiplication Formula Euler's Constant Gamma Function Polygamma Functions Hurwitz Zeta Function Generalized Stieltjes Constants |
ISBN | 3-030-95088-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface List of main symbols Table of contents Chapter 1. Introduction Chapter 2. Preliminaries Chapter 3. Uniqueness and existence results Chapter 4. Interpretations of the asymptotic conditions Chapter 5. Multiple log-gamma type functions Chapter 6. Asymptotic analysis Chapter 7. Derivatives of multiple log-gamma type functions Chapter 8. Further results Chapter 9. Summary of the main results Chapter 10. Applications to some standard special functions Chapter 11. Defining new log-gamma type functions Chapter 12. Further examples Chapter 13. Conclusion A. Higher order convexity properties B. On Krull-Webster's asymptotic condition C. On a question raised by Webster D. Asymptotic behaviors and bracketing E. Generalized Webster's inequality F. On the differentiability of \sigma_g Bibliography Analogues of properties of the gamma function Index |
Record Nr. | UNINA-9910583594703321 |
Marichal Jean-Luc | ||
Cham, : Springer Nature, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A generalization of Bohr-Mollerup's theorem for higher order convex functions / / Jean-Luc Marichal, Naïm Zenaïdi |
Autore | Marichal Jean-Luc |
Pubbl/distr/stampa | Cham, : Springer Nature, 2022 |
Descrizione fisica | 1 online resource (xviii, 323 pages) |
Altri autori (Persone) | ZenaïdiNaïm |
Collana | Developments in mathematics |
Soggetto topico |
Convex functions
Gamma functions |
Soggetto non controllato |
Difference Equation
Higher Order Convexity Bohr-Mollerup's Theorem Principal Indefinite Sums Gauss' Limit Euler Product Form Raabe's Formula Binet's Function Stirling's Formula Euler's Infinite Product Euler's Reflection Formula Weierstrass' Infinite Product Gauss Multiplication Formula Euler's Constant Gamma Function Polygamma Functions Hurwitz Zeta Function Generalized Stieltjes Constants |
ISBN | 3-030-95088-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface List of main symbols Table of contents Chapter 1. Introduction Chapter 2. Preliminaries Chapter 3. Uniqueness and existence results Chapter 4. Interpretations of the asymptotic conditions Chapter 5. Multiple log-gamma type functions Chapter 6. Asymptotic analysis Chapter 7. Derivatives of multiple log-gamma type functions Chapter 8. Further results Chapter 9. Summary of the main results Chapter 10. Applications to some standard special functions Chapter 11. Defining new log-gamma type functions Chapter 12. Further examples Chapter 13. Conclusion A. Higher order convexity properties B. On Krull-Webster's asymptotic condition C. On a question raised by Webster D. Asymptotic behaviors and bracketing E. Generalized Webster's inequality F. On the differentiability of \sigma_g Bibliography Analogues of properties of the gamma function Index |
Record Nr. | UNISA-996483153603316 |
Marichal Jean-Luc | ||
Cham, : Springer Nature, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|