Integral Transformation, Operational Calculus and Their Applications
| Integral Transformation, Operational Calculus and Their Applications |
| Autore | Srivastava Hari Mohan |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 electronic resource (200 p.) |
| Soggetto topico |
Research & information: general
Mathematics & science |
| Soggetto non controllato |
approximation operators
differences of operators Szász–Mirakyan–Baskakov operators Durrmeyer type operators Bernstein polynomials modulus of continuity starlike functions subordination q-Differential operator k-Fibonacci numbers Lorentz invariant complex measures Minkowski space spectral decomposition measure convolution measure product Feynman propagator q-difference operator Janowski function meromorphic multivalent function distortion theorem partial sum closure theorem analytic functions multivalent (or p-valent) functions differential subordination q-derivative (or q-difference) operator Dunkel type integral inequality Schur-convexity majorization theory arithmetic mean-geometric mean (AM-GM) inequality Lerch function quadruple integral contour integral logarithmic function preinvex fuzzy mappings strongly preinvex fuzzy mappings strongly invex fuzzy mappings strongly fuzzy monotonicity strongly fuzzy mixed variational-like inequalities Fourier integral theorem double integral exponential function Catalan’s constant Aprey’s constant non-separable linear canonical wavelet symplectic matrix non-separable linear canonical transform uncertainty principle Fox–Wright function generalized hypergeometric function Mittag–Leffler function |
| ISBN | 3-0365-5482-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910637795103321 |
Srivastava Hari Mohan
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Multivariate Approximation for solving ODE and PDE
| Multivariate Approximation for solving ODE and PDE |
| Autore | Cesarano Clemente |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (202 p.) |
| Soggetto topico |
Mathematics and Science
Research and information: general |
| Soggetto non controllato |
(G,αf)-bonvexity/(G,αf)-pseudobonvexity
(G,αf)-invexity/(G,αf)-pseudoinvexity asymmetric iterative schemes Bernstein polynomials bivariate function blending difference Boolean sum continued fraction delay differential equations divided difference domain decomposition duality efficient solutions equidistant nodes even-order differential equations fourth-order generalized fractional Taylor's formulae group explicit Hadamard transform Hilbert transform hypersingular integral inverse difference iterated generalized fractional derivatives iteration methods Iyengar inequality least-squares multiple roots neutral delay neutral differential equations non-differentiable nondifferentiable nonlinear equations nonoscillatory solutions oblique decomposition one-point methods optimal convergence order of convergence oscillation oscillatory solutions parallel computation parameter estimation physical modelling poisson equation riccati transformation right and left generalized fractional derivatives second-order simultaneous approximation strictly pseudo (V,α,ρ,d)-type-I support function symmetric duality Thiele-Newton's expansion unified dual Viscovatov-like algorithm |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557396603321 |
Cesarano Clemente
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
New Perspectives on the Theory of Inequalities for Integral and Sum / Nazia Irshad ... [et al.]
| New Perspectives on the Theory of Inequalities for Integral and Sum / Nazia Irshad ... [et al.] |
| Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2021 |
| Descrizione fisica | xiii, 308 p. : ill. ; 24 cm |
| Soggetto topico |
26D15 - Inequalities for sums, series and integrals [MSC 2020]
26-XX - Real functions [MSC 2020] |
| Soggetto non controllato |
Abel-Gontscharoff interpolating polynomials
Bernstein polynomials Bounded differentiable functions Cebysev type identity and inequality Cebyšev functional Completely monotonic functions Convex functions Copula Exponentially convex functions Fink identity Fubini’s theorem Function with nondecreasing increments Greens Functions Gruss inequality Hölder’s Inequality Jensen-Boas inequality Korkine’s identity Levinson’s-type inequality Ostrowski inequality |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0274424 |
| Cham, : Birkhäuser, : Springer, 2021 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
New Perspectives on the Theory of Inequalities for Integral and Sum / Nazia Irshad ... [et al.]
| New Perspectives on the Theory of Inequalities for Integral and Sum / Nazia Irshad ... [et al.] |
| Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2021 |
| Descrizione fisica | xiii, 308 p. : ill. ; 24 cm |
| Soggetto topico |
26-XX - Real functions [MSC 2020]
26D15 - Inequalities for sums, series and integrals [MSC 2020] |
| Soggetto non controllato |
Abel-Gontscharoff interpolating polynomials
Bernstein polynomials Bounded differentiable functions Cebysev type identity and inequality Cebyšev functional Completely monotonic functions Convex functions Copula Exponentially convex functions Fink identity Fubini’s theorem Function with nondecreasing increments Greens Functions Gruss inequality Hölder’s Inequality Jensen-Boas inequality Korkine’s identity Levinson’s-type inequality Ostrowski inequality |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00274424 |
| Cham, : Birkhäuser, : Springer, 2021 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||