top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bayes Factors for Forensic Decision Analyses with R [[electronic resource] /] / by Silvia Bozza, Franco Taroni, Alex Biedermann
Bayes Factors for Forensic Decision Analyses with R [[electronic resource] /] / by Silvia Bozza, Franco Taroni, Alex Biedermann
Autore Bozza Silvia
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, : Springer Nature, 2022
Descrizione fisica 1 online resource (XII, 187 p. 22 illus., 5 illus. in color.)
Disciplina 519.5
Collana Springer Texts in Statistics
Soggetto topico Statistics
Mathematical statistics—Data processing
Forensic sciences
Medical jurisprudence
Forensic psychology
Social sciences—Statistical methods
Statistical Theory and Methods
Statistics and Computing
Forensic Science
Forensic Medicine
Forensic Psychology
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Estadística bayesiana
Processament de dades
Criminalística
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Bayes factor
scientific evidence
decision making
forensic science
uncertainty management
probability theory
forensic
decision analysis
Bayesian modeling
R
Bayesian statistics
probabilistic inference
ISBN 3-031-09839-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction to the Bayes factor and decision analysis -- Chapter 2: Bayes factor for model choice -- Chapter 3: Bayes factor for evaluative purposes -- Chapter 4: Bayes factor for investigative purposes.
Record Nr. UNISA-996495166503316
Bozza Silvia  
Cham, : Springer Nature, 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Big Data Analytics and Information Science for Business and Biomedical Applications II
Big Data Analytics and Information Science for Business and Biomedical Applications II
Autore Ahmed S. Ejaz
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (196 p.)
Soggetto topico Computer science
Information technology industries
Soggetto non controllato asymptotic bias and risk
bandwidth selection
Bayesian modeling
big data adaptation
brain network
cancer
causal structure learning
chest X-ray images
consistency
correlation
deep learning
dividend estimation
edge-preserving image denoising
FCI algorithm
fMRI
functional connectivity
functional predictor
functional principal component analysis
functional regression
gestational weight
high dimensionality
high-dimensional data
Human Connectome Project
image sequence
infant birth weight
joint modeling
jump regression analysis
LASSO estimation
linear mixed model
linear mixed-effects model
local smoothing
longitudinal data
lung diseases
maternal weight gain
mobile device
multicollinearity
network analysis
nonparametric regression
nonparametric testing
online health community
options markets
PC algorithm
pretest and shrinkage estimation
pretrained neural networks
ridge estimation
social support
sparse group regularization
spatio-temporal data
statistics
transfer learning
wearable device data
weighted least squares
ISBN 3-0365-5550-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637784003321
Ahmed S. Ejaz  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui