top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bayes Factors for Forensic Decision Analyses with R [[electronic resource] /] / by Silvia Bozza, Franco Taroni, Alex Biedermann
Bayes Factors for Forensic Decision Analyses with R [[electronic resource] /] / by Silvia Bozza, Franco Taroni, Alex Biedermann
Autore Bozza Silvia
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, : Springer Nature, 2022
Descrizione fisica 1 online resource (XII, 187 p. 22 illus., 5 illus. in color.)
Disciplina 519.5
Collana Springer Texts in Statistics
Soggetto topico Statistics
Mathematical statistics—Data processing
Forensic sciences
Medical jurisprudence
Forensic psychology
Social sciences—Statistical methods
Statistical Theory and Methods
Statistics and Computing
Forensic Science
Forensic Medicine
Forensic Psychology
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Estadística bayesiana
Processament de dades
Criminalística
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Bayes factor
scientific evidence
decision making
forensic science
uncertainty management
probability theory
forensic
decision analysis
Bayesian modeling
R
Bayesian statistics
probabilistic inference
ISBN 3-031-09839-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction to the Bayes factor and decision analysis -- Chapter 2: Bayes factor for model choice -- Chapter 3: Bayes factor for evaluative purposes -- Chapter 4: Bayes factor for investigative purposes.
Record Nr. UNISA-996495166503316
Bozza Silvia  
Cham, : Springer Nature, 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Bayes Factors for Forensic Decision Analyses with R / / by Silvia Bozza, Franco Taroni, Alex Biedermann
Bayes Factors for Forensic Decision Analyses with R / / by Silvia Bozza, Franco Taroni, Alex Biedermann
Autore Bozza Silvia
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, : Springer Nature, 2022
Descrizione fisica 1 online resource (XII, 187 p. 22 illus., 5 illus. in color.)
Disciplina 519.5
Collana Springer Texts in Statistics
Soggetto topico Statistics
Mathematical statistics—Data processing
Forensic sciences
Medical jurisprudence
Forensic psychology
Social sciences—Statistical methods
Statistical Theory and Methods
Statistics and Computing
Forensic Science
Forensic Medicine
Forensic Psychology
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Estadística bayesiana
Processament de dades
Criminalística
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Bayes factor
scientific evidence
decision making
forensic science
uncertainty management
probability theory
forensic
decision analysis
Bayesian modeling
R
Bayesian statistics
probabilistic inference
ISBN 3-031-09839-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction to the Bayes factor and decision analysis -- Chapter 2: Bayes factor for model choice -- Chapter 3: Bayes factor for evaluative purposes -- Chapter 4: Bayes factor for investigative purposes.
Record Nr. UNINA-9910623993803321
Bozza Silvia  
Cham, : Springer Nature, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Big Data Analytics and Information Science for Business and Biomedical Applications II
Big Data Analytics and Information Science for Business and Biomedical Applications II
Autore Ahmed S. Ejaz
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (196 p.)
Soggetto topico Information technology industries
Computer science
Soggetto non controllato bandwidth selection
correlation
edge-preserving image denoising
image sequence
jump regression analysis
local smoothing
nonparametric regression
spatio-temporal data
linear mixed model
ridge estimation
pretest and shrinkage estimation
multicollinearity
asymptotic bias and risk
LASSO estimation
high-dimensional data
big data adaptation
dividend estimation
options markets
weighted least squares
online health community
social support
network analysis
cancer
functional principal component analysis
functional predictor
linear mixed-effects model
mobile device
sparse group regularization
wearable device data
Bayesian modeling
functional regression
gestational weight
infant birth weight
joint modeling
longitudinal data
maternal weight gain
transfer learning
deep learning
pretrained neural networks
chest X-ray images
lung diseases
causal structure learning
consistency
FCI algorithm
high dimensionality
nonparametric testing
PC algorithm
fMRI
functional connectivity
brain network
Human Connectome Project
statistics
ISBN 3-0365-5550-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637784003321
Ahmed S. Ejaz  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui