top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bayes Factors for Forensic Decision Analyses with R [[electronic resource] /] / by Silvia Bozza, Franco Taroni, Alex Biedermann
Bayes Factors for Forensic Decision Analyses with R [[electronic resource] /] / by Silvia Bozza, Franco Taroni, Alex Biedermann
Autore Bozza Silvia
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, : Springer Nature, 2022
Descrizione fisica 1 online resource (XII, 187 p. 22 illus., 5 illus. in color.)
Disciplina 519.5
Collana Springer Texts in Statistics
Soggetto topico Statistics
Mathematical statistics—Data processing
Forensic sciences
Medical jurisprudence
Forensic psychology
Social sciences—Statistical methods
Statistical Theory and Methods
Statistics and Computing
Forensic Science
Forensic Medicine
Forensic Psychology
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Estadística bayesiana
Processament de dades
Criminalística
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Bayes factor
scientific evidence
decision making
forensic science
uncertainty management
probability theory
forensic
decision analysis
Bayesian modeling
R
Bayesian statistics
probabilistic inference
ISBN 3-031-09839-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction to the Bayes factor and decision analysis -- Chapter 2: Bayes factor for model choice -- Chapter 3: Bayes factor for evaluative purposes -- Chapter 4: Bayes factor for investigative purposes.
Record Nr. UNISA-996495166503316
Bozza Silvia  
Cham, : Springer Nature, 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Bayes Factors for Forensic Decision Analyses with R / Silvia Bozza, Franco Taroni, Alex Biedermann
Bayes Factors for Forensic Decision Analyses with R / Silvia Bozza, Franco Taroni, Alex Biedermann
Autore Bozza, Silvia
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xii, 187 p. : ill. ; 24 cm
Altri autori (Persone) Biedermann, Alex
Taroni, Franco
Soggetto non controllato Bayes factor
Bayesian Modeling
Bayesian Statistics
Decision Analysis
Decision making
Forensic
Forensic science
Probabilistic inference
Probability Theory
Scientific evidence
Uncertainty management
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0276935
Bozza, Silvia  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Bayes Factors for Forensic Decision Analyses with R / Silvia Bozza, Franco Taroni, Alex Biedermann
Bayes Factors for Forensic Decision Analyses with R / Silvia Bozza, Franco Taroni, Alex Biedermann
Autore Bozza, Silvia
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xii, 187 p. : ill. ; 24 cm
Altri autori (Persone) Biedermann, Alex
Taroni, Franco
Soggetto topico 62-XX - Statistics [MSC 2020]
62F15 - Bayesian inference [MSC 2020]
62Pxx - Applications of statistics [MSC 2020]
Soggetto non controllato Bayes factor
Bayesian Modeling
Bayesian Statistics
Decision Analysis
Decision making
Forensic
Forensic science
Probabilistic inference
Probability Theory
Scientific evidence
Uncertainty management
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00276935
Bozza, Silvia  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Statistical Methods for the Analysis of Genomic Data
Statistical Methods for the Analysis of Genomic Data
Autore Jiang Hui
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (136 p.)
Soggetto topico Mathematics and Science
Research and information: general
Soggetto non controllato Bayes factor
Bayesian mixed-effect model
boosting
classification
classification boundary
clustering analysis
convolutional neural networks
CpG sites
deep learning
DNA methylation
expectation-maximization algorithm
false discovery rate control
feed-forward neural networks
gaussian finite mixture model
GEE
gene expression
gene regulatory network
gene set enrichment analysis
integrative analysis
kernel method
lipid-environment interaction
longitudinal lipidomics study
machine learning
multiple cancer types
n/a
network substructure
nonparanormal graphical model
omics data
Ordinal responses
penalized variable selection
prognosis modeling
RNA-seq
uncertainty
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557545803321
Jiang Hui  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui