Arithmetic Moduli of Elliptic Curves. (AM-108), Volume 108 / / Barry Mazur, Nicholas M. Katz
| Arithmetic Moduli of Elliptic Curves. (AM-108), Volume 108 / / Barry Mazur, Nicholas M. Katz |
| Autore | Katz Nicholas M. |
| Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
| Descrizione fisica | 1 online resource (532 pages) : illustrations |
| Disciplina | 516.3/5 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico |
Curves, Elliptic
Moduli theory Geometry, Algebraic |
| Soggetto non controllato |
Abelian variety
Addition Algebraic variety Algebraically closed field Ambient space Arithmetic Axiom Barry Mazur Base change Calculation Canonical map Change of base Closed immersion Coefficient Coherent sheaf Cokernel Commutative property Congruence relation Coprime integers Corollary Cusp form Cyclic group Dense set Diagram (category theory) Dimension Discrete valuation ring Disjoint union Divisor Eigenfunction Elliptic curve Empty set Factorization Field of fractions Finite field Finite group Finite morphism Free module Functor Group (mathematics) Integer Irreducible component Level structure Local ring Maximal ideal Modular curve Modular equation Modular form Moduli space Morphism of schemes Morphism Neighbourhood (mathematics) Noetherian One-parameter group Open problem Prime factor Prime number Prime power Q.E.D. Regularity theorem Representation theory Residue field Riemann hypothesis Smoothness Special case Subgroup Subring Subset Theorem Topology Two-dimensional space Zariski topology |
| ISBN | 1-4008-8171-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- Chapter 1. GENERALITIES ON " A-STRUCTURES" AND " A-GENERATORS" -- Chapter 2. REVIEW OF ELLIPTIC CURVES -- Chapter 3. THE FOUR BASIC MODULI PROBLEMS FOR ELLIPTIC CURVES: SORITES -- Chapter 4. THE FORMALISM OF MODULI PROBLEMS -- Chapter 5. REGULARITY THEOREMS -- Chapter 6. CYCLICITY -- Chapter 7. QUOTIENTS BY FINITE GROUPS -- Chapter 8. COARSE MODULI SCHEMES, CUSPS, AND COMPACTIFICATION -- Chapter 9. MODULI PROBLEMS VIEWED OVER CYCLOTOMIC INTEGER RINGS -- Chapter 10. THE CALCULUS OF CUSPS AND COMPONENTS VIA THE GROUPS T[N], AND THE GLOBAL STRUCTURE OF THE BASIC MODULI PROBLEMS -- Chapter 11. INTERLUDE-EXOTIC MODULAR MORPHISMS AND ISOMORPHISMS -- Chapter 12. NEW MODULI PROBLEMS IN CHARACTERISTIC p; IGUSA CURVES -- Chapter 13. REDUCTIONS mod p OF THE BASIC MODULI PROBLEMS -- Chapter 14. APPLICATION TO THEOREMS OF GOOD REDUCTION -- NOTES ADDED IN PROOF -- REFERENCES |
| Record Nr. | UNINA-9910154753303321 |
Katz Nicholas M.
|
||
| Princeton, NJ : , : Princeton University Press, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Euler systems / / by Karl Rubin
| Euler systems / / by Karl Rubin |
| Autore | Rubin Karl |
| Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
| Descrizione fisica | 1 online resource (241 p.) |
| Disciplina | 512/.74 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico |
Algebraic number theory
p-adic numbers |
| Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
| ISBN |
0-691-05075-9
1-4008-6520-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
| Record Nr. | UNINA-9910786510103321 |
Rubin Karl
|
||
| Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Euler systems / / by Karl Rubin
| Euler systems / / by Karl Rubin |
| Autore | Rubin Karl |
| Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
| Descrizione fisica | 1 online resource (241 p.) |
| Disciplina | 512/.74 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico |
Algebraic number theory
p-adic numbers |
| Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
| ISBN |
0-691-05075-9
1-4008-6520-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
| Record Nr. | UNINA-9910816804403321 |
Rubin Karl
|
||
| Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||