top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Arithmetic Moduli of Elliptic Curves. (AM-108), Volume 108 / / Barry Mazur, Nicholas M. Katz
Arithmetic Moduli of Elliptic Curves. (AM-108), Volume 108 / / Barry Mazur, Nicholas M. Katz
Autore Katz Nicholas M.
Pubbl/distr/stampa Princeton, NJ : , : Princeton University Press, , [2016]
Descrizione fisica 1 online resource (532 pages) : illustrations
Disciplina 516.3/5
Collana Annals of Mathematics Studies
Soggetto topico Curves, Elliptic
Moduli theory
Geometry, Algebraic
Soggetto non controllato Abelian variety
Addition
Algebraic variety
Algebraically closed field
Ambient space
Arithmetic
Axiom
Barry Mazur
Base change
Calculation
Canonical map
Change of base
Closed immersion
Coefficient
Coherent sheaf
Cokernel
Commutative property
Congruence relation
Coprime integers
Corollary
Cusp form
Cyclic group
Dense set
Diagram (category theory)
Dimension
Discrete valuation ring
Disjoint union
Divisor
Eigenfunction
Elliptic curve
Empty set
Factorization
Field of fractions
Finite field
Finite group
Finite morphism
Free module
Functor
Group (mathematics)
Integer
Irreducible component
Level structure
Local ring
Maximal ideal
Modular curve
Modular equation
Modular form
Moduli space
Morphism of schemes
Morphism
Neighbourhood (mathematics)
Noetherian
One-parameter group
Open problem
Prime factor
Prime number
Prime power
Q.E.D.
Regularity theorem
Representation theory
Residue field
Riemann hypothesis
Smoothness
Special case
Subgroup
Subring
Subset
Theorem
Topology
Two-dimensional space
Zariski topology
ISBN 1-4008-8171-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- Chapter 1. GENERALITIES ON " A-STRUCTURES" AND " A-GENERATORS" -- Chapter 2. REVIEW OF ELLIPTIC CURVES -- Chapter 3. THE FOUR BASIC MODULI PROBLEMS FOR ELLIPTIC CURVES: SORITES -- Chapter 4. THE FORMALISM OF MODULI PROBLEMS -- Chapter 5. REGULARITY THEOREMS -- Chapter 6. CYCLICITY -- Chapter 7. QUOTIENTS BY FINITE GROUPS -- Chapter 8. COARSE MODULI SCHEMES, CUSPS, AND COMPACTIFICATION -- Chapter 9. MODULI PROBLEMS VIEWED OVER CYCLOTOMIC INTEGER RINGS -- Chapter 10. THE CALCULUS OF CUSPS AND COMPONENTS VIA THE GROUPS T[N], AND THE GLOBAL STRUCTURE OF THE BASIC MODULI PROBLEMS -- Chapter 11. INTERLUDE-EXOTIC MODULAR MORPHISMS AND ISOMORPHISMS -- Chapter 12. NEW MODULI PROBLEMS IN CHARACTERISTIC p; IGUSA CURVES -- Chapter 13. REDUCTIONS mod p OF THE BASIC MODULI PROBLEMS -- Chapter 14. APPLICATION TO THEOREMS OF GOOD REDUCTION -- NOTES ADDED IN PROOF -- REFERENCES
Record Nr. UNINA-9910154753303321
Katz Nicholas M.  
Princeton, NJ : , : Princeton University Press, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Euler systems / / by Karl Rubin
Euler systems / / by Karl Rubin
Autore Rubin Karl
Pubbl/distr/stampa Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000
Descrizione fisica 1 online resource (241 p.)
Disciplina 512/.74
Collana Annals of Mathematics Studies
Soggetto topico Algebraic number theory
p-adic numbers
Soggetto non controllato Abelian extension
Abelian variety
Absolute Galois group
Algebraic closure
Barry Mazur
Big O notation
Birch and Swinnerton-Dyer conjecture
Cardinality
Class field theory
Coefficient
Cohomology
Complex multiplication
Conjecture
Corollary
Cyclotomic field
Dimension (vector space)
Divisibility rule
Eigenvalues and eigenvectors
Elliptic curve
Error term
Euler product
Euler system
Exact sequence
Existential quantification
Field of fractions
Finite set
Functional equation
Galois cohomology
Galois group
Galois module
Gauss sum
Global field
Heegner point
Ideal class group
Integer
Inverse limit
Inverse system
Karl Rubin
Local field
Mathematical induction
Maximal ideal
Modular curve
Modular elliptic curve
Natural number
Orthogonality
P-adic number
Pairing
Principal ideal
R-factor (crystallography)
Ralph Greenberg
Remainder
Residue field
Ring of integers
Scientific notation
Selmer group
Subgroup
Tate module
Taylor series
Tensor product
Theorem
Upper and lower bounds
Victor Kolyvagin
ISBN 0-691-05075-9
1-4008-6520-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index
Record Nr. UNINA-9910786510103321
Rubin Karl  
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Euler systems / / by Karl Rubin
Euler systems / / by Karl Rubin
Autore Rubin Karl
Pubbl/distr/stampa Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000
Descrizione fisica 1 online resource (241 p.)
Disciplina 512/.74
Collana Annals of Mathematics Studies
Soggetto topico Algebraic number theory
p-adic numbers
Soggetto non controllato Abelian extension
Abelian variety
Absolute Galois group
Algebraic closure
Barry Mazur
Big O notation
Birch and Swinnerton-Dyer conjecture
Cardinality
Class field theory
Coefficient
Cohomology
Complex multiplication
Conjecture
Corollary
Cyclotomic field
Dimension (vector space)
Divisibility rule
Eigenvalues and eigenvectors
Elliptic curve
Error term
Euler product
Euler system
Exact sequence
Existential quantification
Field of fractions
Finite set
Functional equation
Galois cohomology
Galois group
Galois module
Gauss sum
Global field
Heegner point
Ideal class group
Integer
Inverse limit
Inverse system
Karl Rubin
Local field
Mathematical induction
Maximal ideal
Modular curve
Modular elliptic curve
Natural number
Orthogonality
P-adic number
Pairing
Principal ideal
R-factor (crystallography)
Ralph Greenberg
Remainder
Residue field
Ring of integers
Scientific notation
Selmer group
Subgroup
Tate module
Taylor series
Tensor product
Theorem
Upper and lower bounds
Victor Kolyvagin
ISBN 0-691-05075-9
1-4008-6520-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index
Record Nr. UNINA-9910816804403321
Rubin Karl  
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui