New Trends in Differential and Difference Equations and Applications / João Fialho, Feliz Manuel Minhós
| New Trends in Differential and Difference Equations and Applications / João Fialho, Feliz Manuel Minhós |
| Autore | Fialho João |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (198 p.) |
| Soggetto non controllato |
heteroclinic solutions
non-instantaneous impulses Schauder’s fixed point theory dichotomy second-order differential/difference/q-difference equation of hypergeometric type differential equations a priori estimates global solutions generalized Liouville equation Hilbert space dissipation collocation method exponential dichotomy Sumudu decomposition method three-step Taylor method dynamical system lower and upper solutions problems in the real line Nagumo condition on the real line SIRS epidemic model first order periodic systems regular solutions Clairin’s method coupled nonlinear systems Navier–Stokes equations Bäcklund transformation asymptotic stability Caputo fractional derivative exponential stability difference equations lipschitz stability strong nonlinearities polynomial solution integro-differentials kinetic energy Legendre wavelets weak solutions discrete Lyapunov equation population dynamics non-uniform lattices Korteweg-de Vries equation time-dependent partial differential equations mean curvature operator functional boundary conditions mathematical modelling fixed point theory limit-periodic solutions Arzèla Ascoli theorem Miura transformation state dependent delays ?-Laplacian operator divided-difference equations effective existence criteria |
| ISBN |
9783039215393
3039215396 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910367753303321 |
Fialho João
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Soliton theory and its applications / Gu Chaohao (ed.)
| Soliton theory and its applications / Gu Chaohao (ed.) |
| Pubbl/distr/stampa | Berlin, : Springer, 1995 |
| Descrizione fisica | xii, 403 p. : ill. ; 25 cm |
| Soggetto topico |
00B15 - Collections of articles of miscellaneous specific interest [MSC 2020]
35-XX - Partial differential equations [MSC 2020] 35Q51 - Soliton equations [MSC 2020] 35Q53 - KdV equations (Korteweg-de Vries equations) [MSC 2020] 35Q55 - NLS equations (nonlinear Schroedinger equations) [MSC 2020] 37J35 - Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests [MSC 2020] 37K10 - Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) [MSC 2020] 58J72 - Correspondences and other transformation methods (e.g. Lie-Bäcklund) for PDEs on manifolds [MSC 2020] 76B25 - Solitary waves for incompressible inviscid fluids [MSC 2020] |
| Soggetto non controllato |
Bäcklund transformation
Differential equations Fluid mechanics Geometry Gravity Integrable Systems Inverse scattering methods Mathematical physics Mechanics Numerical Analysis Partial Differential Equations Scattering Solitons Symmetry Transformations |
| ISBN |
03-87571-12-4
978-36-420-8177-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00055210 |
| Berlin, : Springer, 1995 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Soliton theory and its applications / Gu Chaohao (ed.)
| Soliton theory and its applications / Gu Chaohao (ed.) |
| Pubbl/distr/stampa | Berlin, : Springer, 1995 |
| Descrizione fisica | xii, 403 p. : ill. ; 25 cm |
| Soggetto topico |
00B15 - Collections of articles of miscellaneous specific interest [MSC 2020]
35-XX - Partial differential equations [MSC 2020] 35Q51 - Soliton equations [MSC 2020] 35Q53 - KdV equations (Korteweg-de Vries equations) [MSC 2020] 35Q55 - NLS equations (nonlinear Schroedinger equations) [MSC 2020] 37J35 - Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests [MSC 2020] 37K10 - Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) [MSC 2020] 58J72 - Correspondences and other transformation methods (e.g. Lie-Bäcklund) for PDEs on manifolds [MSC 2020] 76B25 - Solitary waves for incompressible inviscid fluids [MSC 2020] |
| Soggetto non controllato |
Bäcklund transformation
Differential equations Fluid mechanics Geometry Gravity Integrable Systems Inverse scattering methods Mathematical physics Mechanics Numerical Analysis Partial Differential Equations Scattering Solitons Symmetry Transformations |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00294166 |
| Berlin, : Springer, 1995 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||