top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Nanoinformatics [[electronic resource] /] / edited by Isao Tanaka
Nanoinformatics [[electronic resource] /] / edited by Isao Tanaka
Autore Isao Tanaka
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Springer Nature, 2018
Descrizione fisica 1 online resource (VIII, 298 p. 188 illus., 142 illus. in color.)
Disciplina 620.115
Soggetto topico Nanotechnology
Chemistry, Physical and theoretical
Nanoscale science
Nanoscience
Nanostructures
Materials science
Spectroscopy
Microscopy
Theoretical and Computational Chemistry
Nanoscale Science and Technology
Characterization and Evaluation of Materials
Spectroscopy/Spectrometry
Spectroscopy and Microscopy
Soggetto non controllato First-principles calculations
Nanomaterials synthesis
Machine learning
Big data
Atomic resolution characterization
ISBN 981-10-7617-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Descriptors for Machine Learning of Materials Data -- 2. Potential Energy Surface Mapping of Charge Carriers in Ionic Conductors Based on a Gaussian Process Model -- 3. Machine learning predictions of factors affecting the activity of heterogeneous metal catalysts -- 4. Machine Learning-based Experimental Design in Materials Science -- 5. Persistent homology and materials informatics -- 6. Polyhedron and Polychoron codes for describing Atomic Arrangements -- 7. Topological Data Analysis for the Characterization of Atomic Scale Morphology from Atom Probe Tomography Images -- 8. Atomic-scale nanostructures by advanced electron microscopy and informatics -- 9. High spatial resolution hyperspectral imaging with machine-learning techniques -- 10. Fabrication, Characterization, and Modulation of Functional Nanolayers -- 11. Grain Boundary Engineering of Alumina Ceramics -- 12. Structural relaxation of oxide compounds from the high-pressure phase.-13.Synthesis and structures of novel solid-state electrolytes.
Record Nr. UNINA-9910293141503321
Isao Tanaka  
Springer Nature, 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Plaston Concept : Plastic Deformation in Structural Materials
The Plaston Concept : Plastic Deformation in Structural Materials
Autore Tanaka Isao
Edizione [1st ed.]
Pubbl/distr/stampa Singapore, : Springer Nature, 2022
Descrizione fisica 1 online resource (278 pages)
Altri autori (Persone) TsujiNobuhiro
InuiHaruyuki
Collana Chemistry and Materials Science Series
Soggetto topico Materials science
Metals technology / metallurgy
Testing of materials
Soggetto non controllato Open Access
Bulk nanostructured metals
Hetero-nanostructured materials
New generation steel
Atomic resolution characterization
Atomic simulations
ISBN 981-16-7715-8
Classificazione TEC021000TEC021030
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Part I Introduction -- 1 Proposing the Concept of Plaston and Strategy to Manage Both High Strength and Large Ductility in Advanced Structural Materials, on the Basis of Unique Mechanical Properties of Bulk Nanostructured Metals -- 1.1 Introduction -- 1.2 Reason of Strength-Ductility Trade-Off, and Mechanical Properties of Typical Bulk Nanostructured Metals -- 1.3 Bulk Nanostructured Metals Exhibiting Both High Strength and Large Ductility -- 1.4 Proposing the Concept of Plaston and a Strategy to Overcome Strength-Ductility Trade-Off -- 1.5 Conclusions -- References -- Part II Simulation of Plaston and Plaston Induced Phenomena -- 2 Free-energy-based Atomistic Study of Nucleation Kinetics and Thermodynamics of Defects in Metals -- Plastic Strain Carrier ``Plaston'' -- 2.1 Introduction -- 2.2 Shuffling Dominant {10bar12} langle10bar1bar1rangle Deformation Twinning in Hexagonal Close-Packed Magnesium (ch2Ishii16) -- 2.3 Dislocation Nucleation from GBs (ch2Junping16) -- 2.4 Homogeneous Dislocation Nucleation in Nanoindentation (ch2Sato19) -- 2.5 Summary -- References -- 3 Atomistic Study of Disclinations in Nanostructured Metals -- 3.1 Introduction -- 3.1.1 Various Deformation Modes in Nanostructured Metals -- 3.1.2 Disclinations -- 3.2 Grain Subdivision: Disclinations in Grains -- 3.2.1 Strain Gradients in Severe Plastic Deformation Processes -- 3.2.2 Grain Subdivision by Severe Plastic Deformation -- 3.2.3 Partial Disclinations Induced by the Strain Gradient -- 3.3 Fracture Toughness: Disclinations at the Grain Boundary -- 3.3.1 High Strength and High Toughness -- 3.3.2 Dislocation Emission from the Grain Boundary -- 3.3.3 Intragranular Crack -- 3.3.4 Intergranular Crack -- 3.4 Conclusion -- References -- 4 Collective Motion of Atoms in Metals by First Principles Calculations -- 4.1 Introduction.
4.2 Phase-Transition Pathway in Metallic Elements -- 4.3 HCP-Ti Under Shear Deformation Along Twinning Mode -- References -- 5 Descriptions of Dislocation via First Principles Calculations -- 5.1 Introduction -- 5.2 Stacking Fault Energy -- 5.3 Analytical Description of Dislocations: Peierls-Nabarro Model -- 5.4 First Principles Calculations of a Dislocation Core -- 5.4.1 Atomic Modeling of a Dislocation Core -- 5.4.2 First Principles Calculations -- References -- Part III Experimental Analyses of Plaston -- 6 Plaston-Elemental Deformation Process Involving Cooperative Atom Motion -- 6.1 Introduction -- 6.2 Nucleation and Motion of Plastons (Possible Deformation Modes) Under Stress -- 6.3 Cooperative Motion of Atoms in Plastons -- 6.4 Origin of Cooperative Atom Motion in the Nucleation of Plastons -- 6.5 Applications of the Concept of Plastons to the Improvement of Mechanical Properties of Structural Materials -- 6.6 Conclusions -- References -- 7 TEM Characterization of Lattice Defects Associated with Deformation and Fracture in α-Al2O3 -- 7.1 Introduction -- 7.2 Atomic Structure Analysis of Dislocations in Low-angle Boundaries -- 7.2.1 1/3< -- 11bar2 0> -- Basal Edge Dislocation -- 7.2.2 1/3< -- 11 bar2 0> -- Basal Screw Dislocation -- 7.2.3 < -- 1bar1 00> -- Edge Dislocation -- 7.2.4 1/3< -- bar1 101> -- Mixed Dislocation -- 7.3 Analysis of Dislocation Formation and Grain Boundary Fracture by in Situ TEM Nanoindentation and Atomic-Resolution STEM -- 7.3.1 Introduction of a Basal Mixed Dislocation and Its Core Structure -- 7.3.2 Crack Propagation Along Zr-Doped ∑13 Grain Boundary -- 7.4 Summary -- References -- 8 Nanomechanical Characterization of Metallic Materials -- 8.1 Nanomechanical Characterization as an Advanced Technique -- 8.2 Plasticity Initiation Analysis Through Nanoindentation Technique.
8.3 Effect of Lattice Defects Including Grain Boundaries, Solid-Solution Elements, and Initial Dislocation Density on the Plasticity Initiation Behavior -- 8.3.1 Grain Boundary -- 8.3.2 Solid Solution Element -- 8.3.3 Initial Dislocation Density -- 8.4 Initiation and Subsequent Behavior of Plastic Deformation -- 8.4.1 Sample Size Effect and Elementary Process -- 8.4.2 Dislocation Mobility and Mechanical Behavior in Bcc Crystal Structures -- 8.4.3 Plasticity Induced by Phase Transformation -- 8.5 Summary -- References -- 9 Synchrotron X-ray Study on Plaston in Metals -- References -- 10 Microstructural Crack Tip Plasticity Controlling Small Fatigue Crack Growth -- 10.1 Introduction: Small Crack Problem -- 10.2 Grain Refinement: Characteristic Distributions of Dislocation Barrier and Source -- 10.3 Plasticity-Induced Transformation: Thermodynamic-Based Design -- 10.3.1 Geometrical Effect on Crack Tip Deformation -- 10.3.2 Transformation-Induced Hardening and Lattice Expansion -- 10.4 Dislocation Planarity: Stress Shielding and Mode II Crack Growth -- 10.5 Kinetic Effects of Solute Atoms on Crack Tip Plasticity -- 10.5.1 Strain-Age Hardening -- 10.5.2 Effects of i-s Interaction -- 10.6 Effect of Microstructural Hardness Heterogeneity: Discontinuous Crack Tip Plasticity -- 10.7 Summary -- References -- Part IV Design and Development of High Performance Structural Materials -- 11 Designing High-Mn Steels -- 11.1 Introduction -- 11.2 Plasticity Mechanisms in γ-austenite -- 11.3 Polyhedron Models for FCC Plasticity Mechanisms -- 11.4 Plasticity Mechanisms Under Tensile Loading -- 11.4.1 Selection Rule and Generation Processes -- 11.4.2 Transformation- and Twinning-Induced Plasticities -- 11.4.3 Martensite/twin Variants -- 11.5 Plasticity Mechanisms Under Cyclic Loading -- 11.6 Concluding Remarks -- References.
12 Design and Development of Novel Wrought Magnesium Alloys -- 12.1 Introduction -- 12.2 Requirements for Wrought Magnesium Alloys -- 12.2.1 Extruded Alloys -- 12.2.2 Sheet Alloys -- 12.3 Development of Industrially Viable Precipitation Hardenable Alloys -- 12.4 Examples of Heat-Treatable Wrought Alloys -- 12.4.1 Extruded Alloys -- 12.4.2 Sheet Alloys -- 12.4.3 Toward the Improvement of Room Temperature Formability -- 12.4.4 Strengthening by G.P. Zones -- 12.5 Summary and Future Outlooks -- References.
Record Nr. UNINA-9910523879803321
Tanaka Isao  
Singapore, : Springer Nature, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui