High Energy Cosmic Rays / Todor Stanev |
Autore | Stanev, Todor |
Edizione | [3. ed] |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | xvi, 342 p. : ill. ; 24 cm |
Soggetto non controllato |
Astroparticle Physics
Atmospheric Neutrinos Cosmic Ray Showers Gamma-ray astronomy Multi-messenger astronomy Neutrino Oscillation Particle physics hadronic interaction models high energy neutrino astronomy |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00282531 |
Stanev, Todor | ||
Cham, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Introduction to Particle and Astroparticle Physics : Questions to the Universe / Alessandro De Angelis, Mário João Martins Pimenta |
Autore | De Angelis, Alessandro <1959- > |
Pubbl/distr/stampa | Milano, : Springer, 2015 |
Descrizione fisica | xxiii, 661 p. : ill. ; 24 cm. |
Altri autori (Persone) | Martins Pimenta, Mário João |
Soggetto topico |
81-XX - Quantum theory [MSC 2020]
85-XX - Astronomy and Astrophysics [MSC 2020] 81V35 - Nuclear physics [MSC 2020] 81V10 - Electromagnetic interaction; quantum electrodynamics [MSC 2020] 81V05 - Strong interaction, including quantum chromodynamics [MSC 2020] 81V15 - Weak interaction in quantum theory [MSC 2020] |
Soggetto non controllato |
Astrobiology
Astroparticle Physics Cosmic rays Cosmology Introduction Field theories High-Energy Physics Neutrino oscillations and masses Particle detection Particles and symmetries The Higgs mechanism |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0133964 |
De Angelis, Alessandro <1959- > | ||
Milano, : Springer, 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Introduction to Particle and Astroparticle Physics : Questions to the Universe / Alessandro De Angelis, Mário João Martins Pimenta |
Autore | De Angelis, Alessandro <1959- > |
Pubbl/distr/stampa | Milano, : Springer, 2015 |
Descrizione fisica | xxiii, 661 p. : ill. ; 24 cm. |
Altri autori (Persone) | Martins Pimenta, Mário João |
Soggetto topico |
81-XX - Quantum theory [MSC 2020]
81V05 - Strong interaction, including quantum chromodynamics [MSC 2020] 81V10 - Electromagnetic interaction; quantum electrodynamics [MSC 2020] 81V15 - Weak interaction in quantum theory [MSC 2020] 81V35 - Nuclear physics [MSC 2020] 85-XX - Astronomy and Astrophysics [MSC 2020] |
Soggetto non controllato |
Astrobiology
Astroparticle Physics Cosmic rays Cosmology Introduction Field theories High-Energy Physics Neutrino oscillations and masses Particle detection Particles and symmetries The Higgs mechanism |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00133964 |
De Angelis, Alessandro <1959- > | ||
Milano, : Springer, 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Particle and Astroparticle Physics : Problems and Solutions / Alessandro De Angelis, Mário Pimenta, Ruben Conceição |
Autore | De Angelis, Alessandro <1959- > |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | ix, 325 p. : ill. ; 24 cm |
Altri autori (Persone) |
Conceição, Ruben
Pimenta, Mário |
Soggetto non controllato |
Astrobiology and the Relation of Fundamental Physics to Life
Astroparticle Physics Astrophysics High-Energy Astrophysics Multimessenger Astronomy Multimessenger Astrophysics Particle detection Standard Model of Cosmology and the Dark Universe |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00282679 |
De Angelis, Alessandro <1959- > | ||
Cham, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Science With The Cherenkov Telescope Array |
Autore | The Cta Consortium |
Pubbl/distr/stampa | Singapore : , : World Scientific Publishing Company, , 2018 |
Descrizione fisica | 1 electronic resource (364 p.) |
Disciplina | 522/.6862 |
Altri autori (Persone) |
OngRene A
The Cta Consortium |
Soggetto topico |
Gamma ray astronomy
Astronomy |
Soggetto non controllato |
Gamma Rays
Astrophysics Cherenkov Telescope Array (CTA) Cherenkov Telescopes Astroparticle Physics Multiwavelength Multimessenger Astronomy Dark Matter |
ISBN |
981-327-010-1
981-327-009-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- Executive Summary -- Authors -- Acknowledgements -- Chapters and Corresponding Authors -- Chapter 1. Introduction to CTA Science -- 1.1 Key Characteristics and Capabilities -- 1.1.1 Surveying Capabilities -- 1.1.2 Short Timescale Capabilities -- 1.1.3 Capabilities Beyond Gamma Rays -- 1.2 Overview of CTA Science Themes -- 1.2.1 Understanding the Origin and Role of Relativistic Cosmic Particles -- 1.2.1.1 Cosmic accelerators -- 1.2.1.2 Propagation and influence of accelerated particles -- 1.2.2 Probing Extreme Environments -- 1.2.2.1 Black holes and jets -- 1.2.2.2 Neutron stars and relativistic outflows -- 1.2.2.3 Cosmic voids -- 1.2.3 Exploring Frontiers in Physics -- 1.2.3.1 Dark matter -- 1.2.3.2 Quantum gravity and axion-like particle search -- 1.3 Community Input to the Science Case -- Chapter 2. Synergies -- 2.1 Radio to (Sub)Millimetre -- 2.2 Infrared/Optical through Ultraviolet and Transient Factories -- 2.3 X-ray -- 2.4 Sub-VHE Gamma-ray Energies -- 2.5 Complementary VHE Gamma-ray Instruments -- 2.6 VHE and UHE Neutrinos -- 2.7 Gravitational Waves -- Chapter 3. Core Programme Overview -- Chapter 4. Dark Matter Programme -- 4.1 Science Targeted -- 4.1.1 Existence of Dark Matter -- 4.1.2 Distribution of Dark Matter -- 4.1.3 The Nature of Dark Matter -- 4.1.4 Search Methods for Dark Matter -- 4.1.5 Annihilation of Dark Matter Particles -- 4.1.6 Parameters Expected for WIMP Dark Matter -- 4.1.7 Rate of Gamma Rays in Detector -- 4.2 Strategy -- 4.2.1 Milky Way -- 4.2.1.1 Description -- 4.2.1.2 Evolution of knowledge -- 4.2.1.3 Observational strategy -- 4.2.1.4 Performance -- 4.2.2 Dwarf Spheroidal Galaxies and Dark Clumps -- 4.2.2.1 Description -- 4.2.2.2 Evolution of knowledge -- 4.2.2.3 Observational strategy -- 4.2.2.4 Performance -- 4.2.3 Large Magellanic Cloud -- 4.2.3.1 Description -- 4.2.3.2 Evolution of knowledge.
4.2.3.3 Observational strategy -- 4.2.3.4 Performance -- 4.2.4 Clusters of Galaxies -- 4.2.5 Summary of Targets -- 4.3 Data Products -- Chapter 5. KSP: Galactic Centre -- 5.1 Science Targeted -- 5.1.1 Scientific Objectives -- 5.1.1.1 Revealing the nature of the central gamma-ray source -- 5.1.1.2 Diffuse VHE emission: Particle acceleration in the vicinity of the Galactic Centre -- 5.1.1.3 Exploring large-scale outflows -- 5.1.1.4 Supernova remnants, pulsar-wind nebulae, and molecular clouds -- 5.1.2 Context/Advance beyond State of the Art -- 5.1.2.1 Central engine -- 5.1.2.2 Advances in the study of diffuse emission -- 5.2 Strategy -- 5.2.1 Timeline and Sub-array Choice -- 5.2.2 Relation to other KSPs -- 5.2.3 Analysis Strategy -- 5.3 Data Products -- 5.4 Expected Performance/Return -- 5.4.1 Determination of the Nature of the Central Source -- 5.4.2 A Detailed View of the Diffuse VHE Emission -- 5.4.3 Resolving New, Previously Undetectable Sources -- 5.4.4 Search for Variability in the VHE Source Near Sgr A* -- 5.4.5 Studying the Interaction of the Central Source with Neighbouring Clouds -- 5.4.6 Science Impact -- Chapter 6. KSP: Galactic Plane Survey -- 6.1 Science Targeted -- 6.1.1 Scientific Objectives -- 6.1.2 Context/Advance beyond State of the Art -- 6.1.3 Multi-wavelength/Multi-messenger Context -- 6.1.3.1 Synergy with HAWC -- 6.1.3.2 Synergies with other instruments -- 6.2 Strategy -- 6.2.1 Observation Requirements -- 6.2.2 Targets, Observation Strategy, and Follow-ups -- 6.2.3 Relation/Importance to other KSPs -- 6.3 Data Products -- 6.4 Expected Performance/Return -- 6.4.1 Performance of the CTA GPS -- 6.4.2 Source Confusion -- 6.4.3 Summary -- Chapter 7. KSP: Large Magellanic Cloud Survey -- 7.1 Science Targeted -- 7.1.1 Scientific Objectives -- 7.1.2 Context/Advance beyond State of the Art -- 7.2 Strategy -- 7.3 Data Products. 7.4 Expected Performance/Return -- Chapter 8. KSP: Extragalactic Survey -- 8.1 Science Targeted -- 8.1.1 Scientific Objectives -- 8.1.2 Context/advance beyond state of the art -- 8.2 Strategy -- 8.2.1 Possibility of Several Pointings for a given Field of View -- 8.2.2 Shallow survey versus deep survey -- 8.2.3 Targets -- 8.3 Data Products -- 8.4 Expected Performance/Return -- 8.4.1 Method -- 8.4.2 Serendipitous Discoveries during the Construction Phase -- 8.4.3 Results after the Completion of the Survey -- 8.4.4 Participation of LSTs -- 8.4.5 Prospects for Divergent Pointing -- Chapter 9. KSP: Transients -- 9.1 Science Targeted -- 9.1.1 Scientific Objectives -- 9.1.2 Context/Advance beyond State of the Art -- 9.2 Strategy -- 9.3 Data Products -- 9.4 Expected Performance/Return -- Chapter 10. KSP: Cosmic Ray PeVatrons -- 10.1 Science Targeted -- 10.1.1 Scientific Objectives -- 10.1.2 Context/Advance beyond State of the Art -- 10.1.2.1 Hadronic mechanisms and the connection with cosmic-ray origin -- 10.2 Strategy -- 10.2.1 Targets -- 10.3 Data Products -- 10.4 Expected Performance/Return -- Chapter 11. KSP: Star Forming Systems -- 11.1 Science Targeted -- 11.1.1 Scientific Objectives -- 11.1.2 Context/Advance beyond State of the Art -- 11.1.2.1 Star-forming regions -- 11.1.2.2 Star-forming galaxies -- 11.1.2.3 Starburst galaxies -- 11.1.2.4 ULIRGs -- 11.2 Strategy -- 11.3 Data Products -- 11.4 Expected Performance/Return -- 11.4.1 Star-forming Regions -- 11.4.2 Star-forming Galaxies -- 11.4.3 Starburst Galaxies -- 11.4.4 ULIRGs -- Chapter 12. KSP: Active Galactic Nuclei -- 12.1 Science Targeted -- 12.1.1 Relativistic Jets from Supermassive Black Holes -- 12.1.1.1 What are the relevant particle acceleration and emission processes in VHE blazars? How are different blazar types related?. 12.1.1.2 What causes the observed variability in AGN from time scales of a few years down to a few minutes? -- 12.1.1.3 From where does the VHE emission of radio galaxies originate? -- 12.1.1.4 Do other classes of AGN emit VHE gamma rays? -- 12.1.2 Blazars as Probes of the Universe -- 12.1.2.1 What is the spectrum of the EBL at redshift z ∼ 0 and how does it evolve at higher redshifts? -- 12.1.2.2 What is the strength of the IGMF? -- 12.1.3 UHECRs and Fundamental Physics -- 12.1.3.1 AGN as potential sources of UHECRs -- 12.1.3.2 Can we find signatures for the existence of axion-like particles? -- 12.1.3.3 Can we rule out Lorentz Invariance Violation? -- 12.1.4 Advance beyond State of the Art -- 12.2 Strategy -- 12.2.1 Target Selection -- 12.2.1.1 Long-term monitoring -- 12.2.1.2 AGN flare programme -- 12.2.1.3 High-quality spectra -- 12.2.1.4 Time distribution model for the AGN KSP -- 12.2.2 Multi-wavelength and Multi-messenger Coverage -- 12.3 Data Products -- 12.4 Expected Performance/Return -- 12.4.1 Guaranteed Science Return -- 12.4.2 Discovery Potential -- Chapter 13. KSP: Clusters of Galaxies -- 13.1 Science Targeted -- 13.1.1 Scientific Objectives -- 13.1.2 Context/Advance beyond State of the Art -- 13.2 Strategy -- 13.2.1 Targets -- 13.3 Data Products -- 13.4 Expected Performance/Return -- Chapter 14. Capabilities beyond Gamma Rays -- 14.1 Cosmic-Ray Nuclei -- 14.2 Cosmic-Ray Electrons -- 14.3 Optical Measurements with CTA -- Chapter 15. Appendix: Simulating CTA -- References -- Glossary. |
Record Nr. | UNINA-9910346694803321 |
The Cta Consortium | ||
Singapore : , : World Scientific Publishing Company, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|