Harmonic and Complex Analysis in Several Variables / Steven G. Krantz
| Harmonic and Complex Analysis in Several Variables / Steven G. Krantz |
| Autore | Krantz, Steven G. |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | xii, 424 p. ; 24 cm |
| Soggetto topico | 32A50 - Harmonic analysis of several complex variables [MSC 2020] |
| Soggetto non controllato |
Admissible convergence
Bergman Kernels Bergman metric Calderon-Zygmund theory Canonical kernels Cauchy-Riemann equations Constructive kernels Finsler geometry Folland-Stein theorem Harmonic analysis Heisenberg group Holomorphic function Monge-Ampère equation Paley-Wiener theorem Poisson Kernel Prolegomena Reproducing kernels Several complex variables Szego integral d-bar Neumann problem |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0124028 |
Krantz, Steven G.
|
||
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Harmonic and Complex Analysis in Several Variables / Steven G. Krantz
| Harmonic and Complex Analysis in Several Variables / Steven G. Krantz |
| Autore | Krantz, Steven G. |
| Pubbl/distr/stampa | Cham, : Springer, 2017 |
| Descrizione fisica | xii, 424 p. ; 24 cm |
| Soggetto topico | 32A50 - Harmonic analysis of several complex variables [MSC 2020] |
| Soggetto non controllato |
Admissible convergence
Bergman Kernels Bergman metric Calderon-Zygmund theory Canonical kernels Cauchy-Riemann equations Constructive kernels Finsler geometry Folland-Stein theorem Harmonic analysis Heisenberg group Holomorphic Functions Monge-Ampère equation Paley-Wiener theorem Poisson Kernel Prolegomena Reproducing kernels Several complex variables Szego integral d-bar Neumann problem |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00124028 |
Krantz, Steven G.
|
||
| Cham, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||