Kernel Mode Decomposition and the Programming of Kernels / Houman Owhadi, Clint Scovel, Gene Ryan Yoo
| Kernel Mode Decomposition and the Programming of Kernels / Houman Owhadi, Clint Scovel, Gene Ryan Yoo |
| Autore | Owhadi, Houman |
| Pubbl/distr/stampa | Cham, : Springer, 2021 |
| Descrizione fisica | x, 118 p. : ill. ; 24 cm |
| Altri autori (Persone) |
Scovel, Clint
Yoo, Gene Ryan |
| Soggetto topico |
68T10 - Pattern recognition, speech recognition [MSC 2020]
62J02 - General nonlinear regression [MSC 2020] 62-XX - Statistics [MSC 2020] 62G07 - Density estimation [MSC 2020] 62J12 - Generalized linear models (logistic models) [MSC 2020] 62R07 - Statistical aspects of big data and data science [MSC 2020] 62H30 - Classification and discrimination; cluster analysis (statistical aspects) [MSC 2020] 62G08 - Nonparametric regression and quantile regression [MSC 2020] 68T09 - Computational aspects of data analysis and big data [MSC 2020] |
| Soggetto non controllato |
Additive models
Empirical mode decomposition Gaussian process regression Kernel methods Time-frequency decomposition |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0274859 |
Owhadi, Houman
|
||
| Cham, : Springer, 2021 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Kernel Mode Decomposition and the Programming of Kernels / Houman Owhadi, Clint Scovel, Gene Ryan Yoo
| Kernel Mode Decomposition and the Programming of Kernels / Houman Owhadi, Clint Scovel, Gene Ryan Yoo |
| Autore | Owhadi, Houman |
| Pubbl/distr/stampa | Cham, : Springer, 2021 |
| Descrizione fisica | x, 118 p. : ill. ; 24 cm |
| Altri autori (Persone) |
Scovel, Clint
Yoo, Gene Ryan |
| Soggetto topico |
62-XX - Statistics [MSC 2020]
62G07 - Density estimation [MSC 2020] 62G08 - Nonparametric regression and quantile regression [MSC 2020] 62H30 - Classification and discrimination; cluster analysis (statistical aspects) [MSC 2020] 62J02 - General nonlinear regression [MSC 2020] 62J12 - Generalized linear models (logistic models) [MSC 2020] 62R07 - Statistical aspects of big data and data science [MSC 2020] 68T09 - Computational aspects of data analysis and big data [MSC 2020] 68T10 - Pattern recognition, speech recognition [MSC 2020] |
| Soggetto non controllato |
Additive models
Empirical mode decomposition Gaussian process regression Kernel methods Time-frequency decomposition |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00274859 |
Owhadi, Houman
|
||
| Cham, : Springer, 2021 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Modeling discrete time-to-event data / Gerhard Tutz, Matthias Schmid
| Modeling discrete time-to-event data / Gerhard Tutz, Matthias Schmid |
| Autore | Tutz, Gerhard |
| Pubbl/distr/stampa | [Cham], : Springer, 2016 |
| Descrizione fisica | X, 247 p. : ill. ; 24 cm |
| Altri autori (Persone) | Schmid, Matthias |
| Soggetto topico |
62-XX - Statistics [MSC 2020]
62P10 - Applications of statistics to biology and medical sciences; meta analysis [MSC 2020] 62M10 - Time series, auto-correlation, regression, etc. in statistics (GARCH) [MSC 2020] 62G05 - Nonparametric estimation [MSC 2020] 62P05 - Applications of statistics to actuarial sciences and financial mathematics [MSC 2020] 62N02 - Estimation in survival analysis and censored data [MSC 2020] 62N03 - Testing in survival analysis and censored data [MSC 2020] |
| Soggetto non controllato |
Additive models
Competing risks Continuation ratio model DiscSurv Discrete frailty model Discrete hazard function Discrete hazard model Generalized estimation equations Goodness-of-Fit Gradient boosting Interval censoring Life tables Multiple spells Penalized regression Recursive partitioning Sequential methods in item response theory Smooth effects Survival data Survival functions Time-dependent AUC Time-to-Event Data |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0114987 |
Tutz, Gerhard
|
||
| [Cham], : Springer, 2016 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Modeling discrete time-to-event data / Gerhard Tutz, Matthias Schmid
| Modeling discrete time-to-event data / Gerhard Tutz, Matthias Schmid |
| Autore | Tutz, Gerhard |
| Pubbl/distr/stampa | [Cham], : Springer, 2016 |
| Descrizione fisica | X, 247 p. : ill. ; 24 cm |
| Altri autori (Persone) | Schmid, Matthias |
| Soggetto topico |
62-XX - Statistics [MSC 2020]
62G05 - Nonparametric estimation [MSC 2020] 62M10 - Time series, auto-correlation, regression, etc. in statistics (GARCH) [MSC 2020] 62N02 - Estimation in survival analysis and censored data [MSC 2020] 62N03 - Testing in survival analysis and censored data [MSC 2020] 62P05 - Applications of statistics to actuarial sciences and financial mathematics [MSC 2020] 62P10 - Applications of statistics to biology and medical sciences; meta analysis [MSC 2020] |
| Soggetto non controllato |
Additive models
Competing risks Continuation ratio model DiscSurv Discrete frailty model Discrete hazard function Discrete hazard model Generalized estimation equations Goodness-of-fit test Gradient boosting Interval censoring Life tables Multiple spells Penalized regression Recursive partitioning Sequential methods in item response theory Smooth effects Survival data Survival functions Time-dependent AUC Time-to-Event Data |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00114987 |
Tutz, Gerhard
|
||
| [Cham], : Springer, 2016 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||