top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Intelligence-Based Learning Approaches for Remote Sensing
Artificial Intelligence-Based Learning Approaches for Remote Sensing
Autore Jeon Gwanggil
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (382 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Environmental science, engineering & technology
Soggetto non controllato pine wilt disease dataset
GIS application visualization
test-time augmentation
object detection
hard negative mining
video synthetic aperture radar (SAR)
moving target
shadow detection
deep learning
false alarms
missed detections
synthetic aperture radar (SAR)
on-board
ship detection
YOLOv5
lightweight detector
remote sensing image
spectral domain translation
generative adversarial network
paired translation
synthetic aperture radar
ship instance segmentation
global context modeling
boundary-aware box prediction
land-use and land-cover
built-up expansion
probability modelling
landscape fragmentation
machine learning
support vector machine
frequency ratio
fuzzy logic
artificial intelligence
remote sensing
interferometric phase filtering
sparse regularization (SR)
deep learning (DL)
neural convolutional network (CNN)
semantic segmentation
open data
building extraction
unet
deeplab
classifying-inversion method
AIS
atmospheric duct
ship detection and classification
rotated bounding box
attention
feature alignment
weather nowcasting
ResNeXt
radar data
spectral-spatial interaction network
spectral-spatial attention
pansharpening
UAV visual navigation
Siamese network
multi-order feature
MIoU
imbalanced data classification
data over-sampling
graph convolutional network
semi-supervised learning
troposcatter
tropospheric turbulence
intercity co-channel interference
concrete bridge
visual inspection
defect
deep convolutional neural network
transfer learning
interpretation techniques
weakly supervised semantic segmentation
ISBN 3-0365-6084-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910639984703321
Jeon Gwanggil  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Clinical Management and Challenges in Polytrauma
Clinical Management and Challenges in Polytrauma
Autore Pfeifer Roman
Pubbl/distr/stampa Basel, : MDPI Books, 2022
Descrizione fisica 1 electronic resource (158 p.)
Soggetto topico Medicine
Soggetto non controllato pelvic ring fracture
PCCD
position
associated injuries
geriatric trauma
scoring
polytrauma
ISS
AIS
geriatric patients
orthogeriatric
E-bike injuries
outcome
injury pattern comparison
traumatic injury
reactive oxygen species
phagocytosis
CD14
CD16
CD62L
fMLP
PMA
emergency surgery
trauma team competence
trauma system
life-saving intervention
trauma
non-invasive external pelvic stabilizers
bleeding
pelvic fractures
post mortem analysis
biomechanical force
pneumatic pelvic sling VBM®
T-POD®
cloth sling
SAM Sling®
trauma victims
prehospital death
Injury Severity Score (ISS)
hemorrhage
shock
resuscitation
coagulopathy
oxygen transport
endotheliopathy
microcirculation
macrocirculation
orthopaedic trauma
nutritional deficiencies
vitamins
lower extremity
wound complications
nutrition wound healing
platelets
immune system
posttraumatic organ failure
posttraumatic lung dysfunction
posttraumatic hyperinflammation
I-FABP
biomarker
intestinal damage
hemorrhagic shock
major trauma
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910595079503321
Pfeifer Roman  
Basel, : MDPI Books, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Remote Sensing in Vessel Detection and Navigation
Remote Sensing in Vessel Detection and Navigation
Autore Heiselberg Henning
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (286 p.)
Soggetto topico Research & information: general
Soggetto non controllato autonomous navigation
automatic radar plotting aid
safe objects control
game theory
computer simulation
Sentinel-2
multispectral
temporal offsets
ship
aircraft
velocity
altitude
parallax
jet stream
Unmanned Surface Vessel (USV)
multi-Global Navigation Satellite System (GNSS) receiver
bathymetric measurements
cross track error (XTE)
SSL
six-degrees-of-freedom motion
motion attitude model
edge detection
straight-line fitting
visual saliency
vessel detection
video monitoring
inland waterway
real-time detection
neural network
target recognition
HRRP
residual structure
loss function
trajectory tracking
unmanned surface vehicle
navigation
bathymetry
hydrographic survey
real-time communication
maritime situational awareness
ship detection
Iridium
on-board
image processing
flight campaign
position estimation
ranging mode
single shore station
AIS
bag-of-words mechanism
machine learning
image analysis
ship classification
marine system
river monitoring system
feature extraction
synthetic aperture radar (SAR) ship detection
multi-stage rotational region based network (MSR2N)
rotated anchor generation
multi-stage rotational detection network (MSRDN)
convolutional neural network (CNN)
synthetic aperture radar (SAR)
multiscale and small ship detection
complex background
false alarm
farbon dioxide peaks
midwave infrared
FTIR
adaptive stochastic resonance (ASR)
matched intrawell response
nonlinear filter
line enhancer
autonomous underwater vehicles (AUVs)
target tracking
group targets
GLMB
structure
formation
remote sensing
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557112803321
Heiselberg Henning  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart Sensors and Devices in Artificial Intelligence
Smart Sensors and Devices in Artificial Intelligence
Autore Zhang Dan
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (336 p.)
Soggetto topico History of engineering & technology
Soggetto non controllato microelectromechanical systems
inertial measurement unit
long short term memory recurrent neural networks
artificial intelligence
deep learning
CNN
LSTM
CO2 welding
molten pool
online monitoring
mechanical sensor
self-adaptiveness
ankle-foot exoskeleton
walking assistance
visual tracking
correlation filter
color histogram
adaptive hedge algorithm
scenario generation
autonomous vehicle
smart sensor and device
wireless sensor networks
task assignment
distributed
reliable
energy-efficient
audification
sensor
visualization
speech to text
text to speech
HF-OTH radar
AIS
radar tracking
data fusion
fuzzy functional dependencies
maritime surveillance
surgical robot end-effector
clamping force estimation
joint torque disturbance observer
PSO-BPNN
cable tension measurement
queue length
roadside sensor
vehicle detection
adverse weather
roadside LiDAR
data processing
air pollution
atmospheric data
IoT
machine learning
RNN
Sensors
smart cities
traffic flow
traffic forecasting
wireless sensor network
fruit condition monitoring
artificial neural network
ethylene gas
banana ripening
unidimensional ACGAN
signal recognition
data augmentation
link establishment behaviors
DenseNet
short-wave radio station
landing gear
adaptive landing
vehicle classification
FBG
smart sensors
outlier detection
local outlier factor
data streams
air quality monitoring
evacuation path
multi-story multi-exit building
temperature sensors
multi-time-slots planning
optimization
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557128403321
Zhang Dan  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui