top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Computational Methods for Oncological Image Analysis
Advanced Computational Methods for Oncological Image Analysis
Autore Rundo Leonardo
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (262 p.)
Soggetto topico Medicine and Nursing
Soggetto non controllato 3D-CNN
bone scintigraphy
brain MRI image
brain tumor
brain tumor segmentation
BRATS dataset
breast cancer
breast cancer detection
breast cancer diagnosis
breast imaging
breast mass
classification
clutter rejection
computer-aided detection
contrast source inversion
dataset partition
deep learning
dimensionality reduction
ensemble classification
ensemble method
false positives reduction
feature selection
image reconstruction
imaging biomarkers
immunotherapy
incoherent imaging
interferometric optical fibers
k-means clustering
Kolmogorov-Smirnov hypothesis test
machine learning
magnetic resonance imaging
mammography
Mask R-CNN
mass detection
mass segmentation
medical imaging
melanoma detection
microwave imaging
MRgFUS
n/a
performance metrics
principal component analysis
prostate cancer
proton resonance frequency shift
radiomics
RBF neural networks
referenceless thermometry
region growing
risk assessment
segmentation
self-attention
semisupervised classification
shallow machine learning
skull stripping
statistical inference
survey
temperature variations
texture
transfer learning
tumor region
U-Net
unsupervised machine learning
Wisconsin Breast Cancer Dataset
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557353503321
Rundo Leonardo  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deep Learning-Based Action Recognition
Deep Learning-Based Action Recognition
Autore Lee Hyo Jong
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (240 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato 3D skeletal
3D-CNN
action recognition
activity recognition
artificial intelligence
class regularization
class-specific features
CNN
continuous hand gesture recognition
convolutional receptive field
data augmentation
deep learning
dynamic gesture recognition
Dynamic Hand Gesture Recognition
embedded system
feature fusion
feedforward neural networks
fusion strategies
gesture classification
gesture spotting
graph convolution
hand gesture recognition
hand shape features
high-order feature
human action recognition
human activity recognition
human-computer interaction
human-machine interface
Long Short-Term Memory
multi-modal features
multi-modalities network
multi-person pose estimation
n/a
partition pose representation
partitioned centerpose network
pose estimation
real-time
spatio-temporal differential
spatio-temporal feature
spatio-temporal image formation
spatiotemporal activations
spatiotemporal feature
stacked hourglass network
transfer learning
ISBN 3-0365-5200-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619465803321
Lee Hyo Jong  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui