top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Causal inference : the mixtape / / Scott Cunningham
Causal inference : the mixtape / / Scott Cunningham
Autore Cunningham Scott
Pubbl/distr/stampa New Haven, Connecticut : , : Yale University Press, , [2021]
Descrizione fisica 1 online resource (352 pages) : illustrations
Disciplina 501
Soggetto topico Causation
Inference
analysis of causes
social sciences
information analysis
ISBN 9780300255881
0-300-25588-8
9780300251685
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto What Is Causal Inference? -- Do Not Confuse Correlation with Causality -- OptimizationMakes Everything Endogenous -- Example: Identifying Price Elasticity of Demand -- Conclusion -- Probability and Regression Review -- Directed Acyclic Graphs -- Introduction -- Introduction to DAG Notation -- Potential Outcomes Causal Model -- Introduction -- Physical Randomization -- Randomization Inference -- Conclusion -- Matching and Subclassification -- Subclassification -- Exact Matching -- Approximate Matching -- Regression Discontinuity -- Huge Popularity of Regression Discontinuity -- Estimation Using an RDD -- Challenges to Identification -- Replicating a Popular Design: The Close Election -- Regression Kink Design -- Conclusion -- Instrumental Variables -- History of Instrumental Variables: Father and Son -- Intuition of Instrumental Variables -- Homogeneous Treatment Effects -- Parental Methamphetamine Abuse and Foster Care -- The Problem of Weak Instruments -- Heterogeneous Treatment Effects -- Applications -- Popular IV Designs -- Conclusion -- Panel Data -- DAG Example -- Estimation -- Data Exercise: Survey of Adult Service Providers -- Conclusion -- Difference-in-Differences -- John Snow’s Cholera Hypothesis -- Estimation -- Inference -- Providing Evidence for Parallel Trends Through Event Studies and Parallel Leads -- The Importance of Placebos in DD -- Twoway Fixed Effects with Differential Timing -- Conclusion -- Synthetic Control -- Introducing the Comparative Case Study -- Prison Construction and Black Male Incarceration -- Conclusion.
Record Nr. UNINA-9910554223803321
Cunningham Scott  
New Haven, Connecticut : , : Yale University Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
SQL for data scientists : a beginner's guide for building datasets for analysis / / Renee M. Teate
SQL for data scientists : a beginner's guide for building datasets for analysis / / Renee M. Teate
Autore Teate Renee M.
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (291 pages)
Disciplina 005.756
Soggetto topico SQL (Computer program language)
software
data science
information analysis
text and data mining
programming language
ISBN 1-119-66939-1
1-119-66938-3
1-119-66937-5
9781119669364
9781119669371
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- About the Author -- About the Technical Editor -- Acknowledgments -- Contents at a Glance -- Contents -- Introduction -- Who I Am and Why I'm Writing About This Topic -- Who This Book Is For -- Why You Should Learn SQL if You Want to Be a Data Scientist -- What I Hope You Gain from This Book -- Conventions -- Reader Support for This Book -- Companion Download Files -- How to Contact the Publisher -- How to Contact the Author -- Chapter 1 Data Sources -- Data Sources -- Tools for Connecting to Data Sources and Editing SQL -- Relational Databases -- Dimensional Data Warehouses -- Asking Questions About the Data Source -- Introduction to the Farmer's Market Database -- A Note on Machine Learning Dataset Terminology -- Exercises -- Chapter 2 The SELECT Statement -- The SELECT Statement -- The Fundamental Syntax Structure of a SELECT Query -- Selecting Columns and Limiting the Number of Rows Returned -- The ORDER BY Clause: Sorting Results -- Introduction to Simple Inline Calculations -- More Inline Calculation Examples: Rounding -- More Inline Calculation Examples: Concatenating Strings -- Evaluating Query Output -- SELECT Statement Summary -- Exercises Using the Included Database -- Chapter 3 The WHERE Clause -- The WHERE Clause -- Filtering SELECT Statement Results -- Filtering on Multiple Conditions -- Multi-Column Conditional Filtering -- More Ways to Filter -- BETWEEN -- IN -- LIKE -- IS NULL -- A Warning About Null Comparisons -- Filtering Using Subqueries -- Exercises Using the Included Database -- Chapter 4 CASE Statements -- CASE Statement Syntax -- Creating Binary Flags Using CASE -- Grouping or Binning Continuous Values Using CASE -- Categorical Encoding Using CASE -- CASE Statement Summary -- Exercises Using the Included Database -- Chapter 5 SQL JOINs -- Database Relationships and SQL JOINs -- A Common Pitfall when Filtering Joined Data -- JOINs with More than Two Tables -- Exercises Using the Included Database -- Chapter 6 Aggregating Results for Analysis -- GROUP BY Syntax -- Displaying Group Summaries -- Performing Calculations Inside Aggregate Functions -- MIN and MAX -- COUNT and COUNT DISTINCT -- Average -- Filtering with HAVING -- CASE Statements Inside Aggregate Functions -- Exercises Using the Included Database -- Chapter 7 Window Functions and Subqueries -- ROW NUMBER -- RANK and DENSE RANK -- NTILE -- Aggregate Window Functions -- LAG and LEAD -- Exercises Using the Included Database -- Chapter 8 Date and Time Functions -- Setting datetime Field Values -- EXTRACT and DATE_PART -- DATE_ADD and DATE_SUB -- DATEDIFF -- TIMESTAMPDIFF -- Date Functions in Aggregate Summaries and Window Functions -- Exercises -- Chapter 9 Exploratory Data Analysis with SQL -- Demonstrating Exploratory Data Analysis with SQL -- Exploring the Products Table -- Exploring Possible Column Values -- Exploring Changes Over Time -- Exploring Multiple Tables Simultaneously -- Exploring Inventory vs. Sales -- Exercises -- Chapter 10 Building SQL Datasets for Analytical Reporting -- Thinking Through Analytical Dataset Requirements -- Using Custom Analytical Datasets in SQL: CTEs and Views -- Taking SQL Reporting Further -- Exercises -- Chapter 11 More Advanced Query Structures -- UNIONs -- Self-Join to Determine To-Date Maximum -- Counting New vs. Returning Customers by Week -- Summary -- Exercises -- Chapter 12 Creating Machine Learning Datasets Using SQL -- Datasets for Time Series Models -- Datasets for Binary Classification -- Creating the Dataset -- Expanding the Feature Set -- Feature Engineering -- Taking Things to the Next Level -- Exercises -- Chapter 13 Analytical Dataset Development Examples -- What Factors Correlate with Fresh Produce Sales? -- How Do Sales Vary by Customer Zip Code, Market Distance, and Demographic Data? -- How Does Product Price Distribution Affect Market Sales? -- Chapter 14 Storing and Modifying Data -- Storing SQL Datasets as Tables and Views -- Adding a Timestamp Column -- Inserting Rows and Updating Values in Database Tables -- Using SQL Inside Scripts -- In Closing -- Exercises -- Appendix Answers to Exercises -- Chapter 1: Data Sources -- Answers -- Chapter 2: The SELECT Statement -- Answers -- Chapter 3: The WHERE Clause -- Answers -- Chapter 4: CASE Statements -- Answers -- Chapter 5: SQL JOINs -- Answers -- Chapter 6: Aggregating Results for Analysis -- Answers -- Chapter 7: Window Functions and Subqueries -- Answers -- Chapter 8: Date and Time Functions -- Answers -- Chapter 9: Exploratory Data Analysis with SQL -- Answers -- Chapter 10: Building SQL Datasets for Analytical Reporting -- Answers -- Chapter 11: More Advanced Query Structures -- Answers -- Chapter 12: Creating Machine Learning Datasets Using SQL -- Answers -- Chapter 14: Storing and Modifying Data
Record Nr. UNINA-9910555033103321
Teate Renee M.  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
SQL for data scientists : a beginner's guide for building datasets for analysis / / Renee M. Teate
SQL for data scientists : a beginner's guide for building datasets for analysis / / Renee M. Teate
Autore Teate Renee M.
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (291 pages)
Disciplina 005.756
Soggetto topico SQL (Computer program language)
software
data science
information analysis
text and data mining
programming language
ISBN 1-119-66939-1
1-119-66938-3
1-119-66937-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- About the Author -- About the Technical Editor -- Acknowledgments -- Contents at a Glance -- Contents -- Introduction -- Who I Am and Why I'm Writing About This Topic -- Who This Book Is For -- Why You Should Learn SQL if You Want to Be a Data Scientist -- What I Hope You Gain from This Book -- Conventions -- Reader Support for This Book -- Companion Download Files -- How to Contact the Publisher -- How to Contact the Author -- Chapter 1 Data Sources -- Data Sources -- Tools for Connecting to Data Sources and Editing SQL -- Relational Databases -- Dimensional Data Warehouses -- Asking Questions About the Data Source -- Introduction to the Farmer's Market Database -- A Note on Machine Learning Dataset Terminology -- Exercises -- Chapter 2 The SELECT Statement -- The SELECT Statement -- The Fundamental Syntax Structure of a SELECT Query -- Selecting Columns and Limiting the Number of Rows Returned -- The ORDER BY Clause: Sorting Results -- Introduction to Simple Inline Calculations -- More Inline Calculation Examples: Rounding -- More Inline Calculation Examples: Concatenating Strings -- Evaluating Query Output -- SELECT Statement Summary -- Exercises Using the Included Database -- Chapter 3 The WHERE Clause -- The WHERE Clause -- Filtering SELECT Statement Results -- Filtering on Multiple Conditions -- Multi-Column Conditional Filtering -- More Ways to Filter -- BETWEEN -- IN -- LIKE -- IS NULL -- A Warning About Null Comparisons -- Filtering Using Subqueries -- Exercises Using the Included Database -- Chapter 4 CASE Statements -- CASE Statement Syntax -- Creating Binary Flags Using CASE -- Grouping or Binning Continuous Values Using CASE -- Categorical Encoding Using CASE -- CASE Statement Summary -- Exercises Using the Included Database -- Chapter 5 SQL JOINs -- Database Relationships and SQL JOINs -- A Common Pitfall when Filtering Joined Data -- JOINs with More than Two Tables -- Exercises Using the Included Database -- Chapter 6 Aggregating Results for Analysis -- GROUP BY Syntax -- Displaying Group Summaries -- Performing Calculations Inside Aggregate Functions -- MIN and MAX -- COUNT and COUNT DISTINCT -- Average -- Filtering with HAVING -- CASE Statements Inside Aggregate Functions -- Exercises Using the Included Database -- Chapter 7 Window Functions and Subqueries -- ROW NUMBER -- RANK and DENSE RANK -- NTILE -- Aggregate Window Functions -- LAG and LEAD -- Exercises Using the Included Database -- Chapter 8 Date and Time Functions -- Setting datetime Field Values -- EXTRACT and DATE_PART -- DATE_ADD and DATE_SUB -- DATEDIFF -- TIMESTAMPDIFF -- Date Functions in Aggregate Summaries and Window Functions -- Exercises -- Chapter 9 Exploratory Data Analysis with SQL -- Demonstrating Exploratory Data Analysis with SQL -- Exploring the Products Table -- Exploring Possible Column Values -- Exploring Changes Over Time -- Exploring Multiple Tables Simultaneously -- Exploring Inventory vs. Sales -- Exercises -- Chapter 10 Building SQL Datasets for Analytical Reporting -- Thinking Through Analytical Dataset Requirements -- Using Custom Analytical Datasets in SQL: CTEs and Views -- Taking SQL Reporting Further -- Exercises -- Chapter 11 More Advanced Query Structures -- UNIONs -- Self-Join to Determine To-Date Maximum -- Counting New vs. Returning Customers by Week -- Summary -- Exercises -- Chapter 12 Creating Machine Learning Datasets Using SQL -- Datasets for Time Series Models -- Datasets for Binary Classification -- Creating the Dataset -- Expanding the Feature Set -- Feature Engineering -- Taking Things to the Next Level -- Exercises -- Chapter 13 Analytical Dataset Development Examples -- What Factors Correlate with Fresh Produce Sales? -- How Do Sales Vary by Customer Zip Code, Market Distance, and Demographic Data? -- How Does Product Price Distribution Affect Market Sales? -- Chapter 14 Storing and Modifying Data -- Storing SQL Datasets as Tables and Views -- Adding a Timestamp Column -- Inserting Rows and Updating Values in Database Tables -- Using SQL Inside Scripts -- In Closing -- Exercises -- Appendix Answers to Exercises -- Chapter 1: Data Sources -- Answers -- Chapter 2: The SELECT Statement -- Answers -- Chapter 3: The WHERE Clause -- Answers -- Chapter 4: CASE Statements -- Answers -- Chapter 5: SQL JOINs -- Answers -- Chapter 6: Aggregating Results for Analysis -- Answers -- Chapter 7: Window Functions and Subqueries -- Answers -- Chapter 8: Date and Time Functions -- Answers -- Chapter 9: Exploratory Data Analysis with SQL -- Answers -- Chapter 10: Building SQL Datasets for Analytical Reporting -- Answers -- Chapter 11: More Advanced Query Structures -- Answers -- Chapter 12: Creating Machine Learning Datasets Using SQL -- Answers -- Chapter 14: Storing and Modifying Data
Record Nr. UNINA-9910676542403321
Teate Renee M.  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Strategic Analytics [[electronic resource] ] : Advancing Strategy Execution and Organizational Effectiveness
Strategic Analytics [[electronic resource] ] : Advancing Strategy Execution and Organizational Effectiveness
Autore Levenson Alec
Edizione [1st edition]
Pubbl/distr/stampa Oakland, : Berrett-Koehler Publishers, 2015
Descrizione fisica 1 online resource (179 p.)
Disciplina 658.4/012
Soggetto topico Strategic planning - Statistical methods
Management
Decision making
Organizational effectiveness
Personnel management
Business & Economics
Management Theory
personnel administration
management planning
statistical method
information analysis
ISBN 1-62656-057-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910797787203321
Levenson Alec  
Oakland, : Berrett-Koehler Publishers, 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Strategic Analytics : Advancing Strategy Execution and Organizational Effectiveness
Strategic Analytics : Advancing Strategy Execution and Organizational Effectiveness
Autore Levenson Alec
Edizione [First edition]
Pubbl/distr/stampa Oakland : , : Berrett-Koehler Publishers, , 2015
Descrizione fisica 1 online resource (179 pages)
Disciplina 658.4/012
Soggetto topico Strategic planning - Statistical methods
Management
Decision making
Organizational effectiveness
Personnel management
Business & Economics
Management Theory
personnel administration
management planning
statistical method
information analysis
ISBN 9781626560574
1626560579
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover Page -- Title Page -- Copyright Page -- Dedication -- Contents -- List of Figures and Tables -- Preface -- Introduction Integrating Enterprise and Human Capital Analytics -- Part I Why Do Strategic Analytics? -- Chapter 1 Of Elephants and Incomplete Analytics -- Chapter 2 Beware the ROI Bogeyman and Other Monsters under the Bed -- Part II How to Do Strategic Analytics -- Chapter 3 Put the Horse in Front of the Cart-Where to Focus the Analysis -- Chapter 4 Step 1-Competitive Advantage Analytics -- Chapter 5 Step 2-Enterprise Analytics -- Chapter 6 Step 3-Human Capital Analytics -- Chapter 7 Putting It All Together -- Chapter 8 Application-Customer Retention and Profitable Growth -- Chapter 9 Application-Go-to-Market Strategies and Effectiveness -- Part III Diving Deeper: How to Make Current Practice Better -- Chapter 10 Critical Roles, Competencies, and Performance -- Chapter 11 Making Sense of Sensing Data -- Chapter 12 Evaluating Human Capital Development: Build versus Buy versus Redesign -- Conclusion Key Learning and Action Points -- References -- Appendix Strategic Analytics Diagnostic Interview Template -- Acknowledgments -- Index -- About the Author -- Footnotes -- Chapter 3 -- Chapter 6.
Record Nr. UNINA-9910972397503321
Levenson Alec  
Oakland : , : Berrett-Koehler Publishers, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui