Black holes, cosmology and extra dimensions [[electronic resource] /] / Kirill A. Bronnikov and Sergey G. Rubin |
Autore | Bronnikov Kirill A |
Pubbl/distr/stampa | Singapore ; ; London, : World Scientific, 2012 |
Descrizione fisica | 1 online resource (442 p.) |
Disciplina | 523 |
Altri autori (Persone) | RubinSergei G |
Soggetto topico |
General relativity (Physics)
Special relativity (Physics) Black holes (Astronomy) Wormholes (Physics) Gravitation Cosmology |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-73936-4
981-4374-21-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Notations; Chapter 1. Modern ideas of gravitation and cosmology - a brief essay; Einstein after Einstein; The technological breakthrough; To quantize or not?; The zoo of theories; Gravitation and the Universe; Part I Gravitation; Chapter 2. Fundamentals of general relativity; 2.1 Special relativity.Minkowski geometry; 2.1.1 Geometry; 2.1.2 Coordinate transformations; 2.1.3 Kinematic effects; 2.1.4 Elements of relativistic point mechanics; 2.2 Riemannian space-time. Coordinate systems and reference frames; 2.2.1 Covariance, maps and atlases; 2.2.2 Reference frames and relativity
2.2.3 Reference frames and chronometric invariants2.2.4 Covariance and relativity; 2.3 Riemannian space-time. Curvature; 2.4 The gravitational field action and dynamic equations; 2.4.1 The Einstein equations; 2.4.2 Geodesic equations; 2.4.3 The correspondence principle; 2.5 Macroscopic matter and nongravitational fields in GR; 2.5.1 Perfect fluid; 2.5.2 Scalar fields; 2.5.3 The electromagnetic field; 2.6 The most symmetric spaces; 2.6.1 Isometry groups and killing vectors; 2.6.2 Isotropic cosmology. The dS and AdS spaces; Chapter 3. Spherically symmetric space-times. Black holes 3.1 Spherically symmetric gravitational fields3.1.1 A regular centre and asymptotic flatness; 3.2 The Reissner-Nordstrom-(anti-)de Sitter solution; 3.2.1 Solution of the Einstein equations; 3.2.2 Special cases; The (anti-)de Sitter metric; The Schwarzschild metric and the Newton law; The Reissner-Nordstrom metric; Metrics with a nonzero cosmological constant; 3.3 Horizons and geodesics in static, spherically symmetric space-times; 3.3.1 The general form of geodesic equations; 3.3.2 Horizons, geodesics and the quasiglobal coordinate; 3.3.3 Transitions to Lemaıtre reference frames 3.3.4 Horizons, R- and T-regions3.4 Schwarzschild black holes. Geodesics and a global description; 3.4.1 R- and T-regions; 3.4.2 Geodesics in the R-region; 3.4.3 Particle capture by a black hole; 3.4.4 A global description: The Kruskal metric; 3.4.5 From Kruskal to Carter-Penrose diagram for the Schwarzschild metric; 3.5 The global causal structure of space-times with horizons; 3.5.1 Crossing the horizon in the general case; 3.5.2 Construction of Carter-Penrose diagrams; 3.6 A black hole as a result of gravitational collapse; 3.6.1 Internal and external regions. Birkhoff's theorem 3.6.2 Gravitational collapse of a spherical dust cloudChapter 4. Black holes under more general conditions; 4.1 Black holes andmassless scalar fields; 4.1.1 The general STT and the Wagoner transformations; On phantom fields; 4.1.2 Minimally coupled scalar fields; 4.1.3 Conformally coupled scalar field; Solutions with nonconformal coupling; 4.1.4 Anomalous (phantom) fields. The anti-Fisher solution; 4.1.5 Cold black holes in the anti-Fisher solution; 4.1.6 Vacuum and electrovacuum in Brans-Dicke theory; 4.1.7 Summary for massless scalar fields 4.2 Scalar fields with arbitrary potentials. No-go theorems |
Record Nr. | UNINA-9910464781103321 |
Bronnikov Kirill A | ||
Singapore ; ; London, : World Scientific, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Black holes, cosmology and extra dimensions [[electronic resource] /] / Kirill A. Bronnikov and Sergey G. Rubin |
Autore | Bronnikov Kirill A |
Pubbl/distr/stampa | Singapore ; ; London, : World Scientific, 2012 |
Descrizione fisica | 1 online resource (442 p.) |
Disciplina | 523 |
Altri autori (Persone) | RubinSergei G |
Soggetto topico |
General relativity (Physics)
Special relativity (Physics) Black holes (Astronomy) Wormholes (Physics) Gravitation Cosmology |
ISBN |
1-283-73936-4
981-4374-21-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Notations; Chapter 1. Modern ideas of gravitation and cosmology - a brief essay; Einstein after Einstein; The technological breakthrough; To quantize or not?; The zoo of theories; Gravitation and the Universe; Part I Gravitation; Chapter 2. Fundamentals of general relativity; 2.1 Special relativity.Minkowski geometry; 2.1.1 Geometry; 2.1.2 Coordinate transformations; 2.1.3 Kinematic effects; 2.1.4 Elements of relativistic point mechanics; 2.2 Riemannian space-time. Coordinate systems and reference frames; 2.2.1 Covariance, maps and atlases; 2.2.2 Reference frames and relativity
2.2.3 Reference frames and chronometric invariants2.2.4 Covariance and relativity; 2.3 Riemannian space-time. Curvature; 2.4 The gravitational field action and dynamic equations; 2.4.1 The Einstein equations; 2.4.2 Geodesic equations; 2.4.3 The correspondence principle; 2.5 Macroscopic matter and nongravitational fields in GR; 2.5.1 Perfect fluid; 2.5.2 Scalar fields; 2.5.3 The electromagnetic field; 2.6 The most symmetric spaces; 2.6.1 Isometry groups and killing vectors; 2.6.2 Isotropic cosmology. The dS and AdS spaces; Chapter 3. Spherically symmetric space-times. Black holes 3.1 Spherically symmetric gravitational fields3.1.1 A regular centre and asymptotic flatness; 3.2 The Reissner-Nordstrom-(anti-)de Sitter solution; 3.2.1 Solution of the Einstein equations; 3.2.2 Special cases; The (anti-)de Sitter metric; The Schwarzschild metric and the Newton law; The Reissner-Nordstrom metric; Metrics with a nonzero cosmological constant; 3.3 Horizons and geodesics in static, spherically symmetric space-times; 3.3.1 The general form of geodesic equations; 3.3.2 Horizons, geodesics and the quasiglobal coordinate; 3.3.3 Transitions to Lemaıtre reference frames 3.3.4 Horizons, R- and T-regions3.4 Schwarzschild black holes. Geodesics and a global description; 3.4.1 R- and T-regions; 3.4.2 Geodesics in the R-region; 3.4.3 Particle capture by a black hole; 3.4.4 A global description: The Kruskal metric; 3.4.5 From Kruskal to Carter-Penrose diagram for the Schwarzschild metric; 3.5 The global causal structure of space-times with horizons; 3.5.1 Crossing the horizon in the general case; 3.5.2 Construction of Carter-Penrose diagrams; 3.6 A black hole as a result of gravitational collapse; 3.6.1 Internal and external regions. Birkhoff's theorem 3.6.2 Gravitational collapse of a spherical dust cloudChapter 4. Black holes under more general conditions; 4.1 Black holes andmassless scalar fields; 4.1.1 The general STT and the Wagoner transformations; On phantom fields; 4.1.2 Minimally coupled scalar fields; 4.1.3 Conformally coupled scalar field; Solutions with nonconformal coupling; 4.1.4 Anomalous (phantom) fields. The anti-Fisher solution; 4.1.5 Cold black holes in the anti-Fisher solution; 4.1.6 Vacuum and electrovacuum in Brans-Dicke theory; 4.1.7 Summary for massless scalar fields 4.2 Scalar fields with arbitrary potentials. No-go theorems |
Record Nr. | UNINA-9910789348303321 |
Bronnikov Kirill A | ||
Singapore ; ; London, : World Scientific, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Black holes, cosmology and extra dimensions / / Kirill A. Bronnikov and Sergey G. Rubin |
Autore | Bronnikov Kirill A |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore ; ; London, : World Scientific, 2012 |
Descrizione fisica | 1 online resource (442 p.) |
Disciplina | 523 |
Altri autori (Persone) | RubinSergei G |
Soggetto topico |
General relativity (Physics)
Special relativity (Physics) Black holes (Astronomy) Wormholes (Physics) Gravitation Cosmology |
ISBN |
1-283-73936-4
981-4374-21-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Notations; Chapter 1. Modern ideas of gravitation and cosmology - a brief essay; Einstein after Einstein; The technological breakthrough; To quantize or not?; The zoo of theories; Gravitation and the Universe; Part I Gravitation; Chapter 2. Fundamentals of general relativity; 2.1 Special relativity.Minkowski geometry; 2.1.1 Geometry; 2.1.2 Coordinate transformations; 2.1.3 Kinematic effects; 2.1.4 Elements of relativistic point mechanics; 2.2 Riemannian space-time. Coordinate systems and reference frames; 2.2.1 Covariance, maps and atlases; 2.2.2 Reference frames and relativity
2.2.3 Reference frames and chronometric invariants2.2.4 Covariance and relativity; 2.3 Riemannian space-time. Curvature; 2.4 The gravitational field action and dynamic equations; 2.4.1 The Einstein equations; 2.4.2 Geodesic equations; 2.4.3 The correspondence principle; 2.5 Macroscopic matter and nongravitational fields in GR; 2.5.1 Perfect fluid; 2.5.2 Scalar fields; 2.5.3 The electromagnetic field; 2.6 The most symmetric spaces; 2.6.1 Isometry groups and killing vectors; 2.6.2 Isotropic cosmology. The dS and AdS spaces; Chapter 3. Spherically symmetric space-times. Black holes 3.1 Spherically symmetric gravitational fields3.1.1 A regular centre and asymptotic flatness; 3.2 The Reissner-Nordstrom-(anti-)de Sitter solution; 3.2.1 Solution of the Einstein equations; 3.2.2 Special cases; The (anti-)de Sitter metric; The Schwarzschild metric and the Newton law; The Reissner-Nordstrom metric; Metrics with a nonzero cosmological constant; 3.3 Horizons and geodesics in static, spherically symmetric space-times; 3.3.1 The general form of geodesic equations; 3.3.2 Horizons, geodesics and the quasiglobal coordinate; 3.3.3 Transitions to Lemaıtre reference frames 3.3.4 Horizons, R- and T-regions3.4 Schwarzschild black holes. Geodesics and a global description; 3.4.1 R- and T-regions; 3.4.2 Geodesics in the R-region; 3.4.3 Particle capture by a black hole; 3.4.4 A global description: The Kruskal metric; 3.4.5 From Kruskal to Carter-Penrose diagram for the Schwarzschild metric; 3.5 The global causal structure of space-times with horizons; 3.5.1 Crossing the horizon in the general case; 3.5.2 Construction of Carter-Penrose diagrams; 3.6 A black hole as a result of gravitational collapse; 3.6.1 Internal and external regions. Birkhoff's theorem 3.6.2 Gravitational collapse of a spherical dust cloudChapter 4. Black holes under more general conditions; 4.1 Black holes andmassless scalar fields; 4.1.1 The general STT and the Wagoner transformations; On phantom fields; 4.1.2 Minimally coupled scalar fields; 4.1.3 Conformally coupled scalar field; Solutions with nonconformal coupling; 4.1.4 Anomalous (phantom) fields. The anti-Fisher solution; 4.1.5 Cold black holes in the anti-Fisher solution; 4.1.6 Vacuum and electrovacuum in Brans-Dicke theory; 4.1.7 Summary for massless scalar fields 4.2 Scalar fields with arbitrary potentials. No-go theorems |
Record Nr. | UNINA-9910818802903321 |
Bronnikov Kirill A | ||
Singapore ; ; London, : World Scientific, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Devastation / / Jane Dougherty |
Autore | Dougherty Jane |
Pubbl/distr/stampa | Lincoln, England : , : Finch Books, , 2016 |
Descrizione fisica | 1 online resource (233 pages) |
Disciplina | 813.6 |
Collana | Pathfinders |
Soggetto topico | Wormholes (Physics) |
ISBN | 1-78651-769-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910164078803321 |
Dougherty Jane | ||
Lincoln, England : , : Finch Books, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|