top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
5G and beyond : fundamentals and standards / / editors, Xingqin Lin, Namyoon Lee
5G and beyond : fundamentals and standards / / editors, Xingqin Lin, Namyoon Lee
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (viii, 543 pages) : illustrations (some color)
Disciplina 621.38456
Soggetto topico 5G mobile communication systems - Standards
Wireless communication systems - Standards
ISBN 3-030-58197-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Introduction to 5G and Beyond -- 1.1 Book Objective -- 1.2 Evolution of Mobile Communications Systems Before 5G -- 1.2.1 1G: Analog Mobile Communication Era -- 1.2.2 2G: Digital Mobile Communication Era -- 1.2.3 3G: Mobile Internet Era -- 1.2.4 4G: Real-Time Streaming Era -- 1.3 What is 5G? -- 1.3.1 5G Use Cases -- 1.3.2 5G Technical Requirements -- 1.3.3 5G Technology Components -- Radio Access Network -- Core Network -- Backhaul and Fronthaul -- 1.3.4 5G Spectrum -- 1.4 5G Standardization -- 1.4.1 ITU 5G Activities -- 1.4.2 3GPP 5G Standardization -- 1.5 What Will 6G Be? -- 1.5.1 Vision for 6G -- 1.5.2 Technical Requirements and Applications -- 1.5.3 Key Enabling Technologies -- 1.6 Book Outline -- References -- Part I Fundamentals of 5G and 6G -- 2 Advanced Channel Coding -- 2.1 Introduction -- 2.2 Formal Definition of RC Codes -- 2.3 Capacity-Achieving RC-Polar Code: Asymptotic Results -- 2.3.1 Overview of Polar Codes -- 2.3.2 Capacity-Achieving Punctured Polar Code -- 2.3.3 PCP Codes -- 2.4 RCPP Codes for Finite Lengths -- 2.4.1 A Reciprocal Puncturing -- 2.4.2 A Hierarchical Puncturing -- 2.4.3 RCPP Codes -- Information-Dependent Frozen Vector -- Encoding and Decoding -- 2.5 Numerical Results -- 2.6 Discussion and Concluding Remarks -- References -- 3 Multiple Access Techniques -- 3.1 Evolution of Multiple Access Techniques -- 3.1.1 Orthogonal Multiple Access (OMA) -- 3.1.2 Space-Division Multiple Access (SDMA) -- 3.1.3 Non-orthogonal Multiple Access (NOMA) -- Single-Antenna NOMA -- Multi-antenna NOMA -- 3.2 Rate-Splitting Multiple Access (RSMA) for 5G and Beyond -- 3.2.1 Literature Review -- 3.2.2 RSMA Framework -- 1-Layer RS -- 2-Layer HRS -- Generalized RS -- 1-Layer RS vs. 2-Layer HRS vs. Generalized RS -- 3.2.3 RSMA vs. NOMA/SDMA/OMA -- Framework Comparison -- Complexity Comparison.
Performance Comparison -- 3.2.4 Advantages of RSMA -- 3.3 Emerging Applications of RSMA -- 3.4 Challenges and Future Trends of RSMA -- References -- 4 Massive MIMO -- 4.1 Introduction -- 4.2 Massive MIMO Systems -- 4.2.1 Uplink Training -- 4.2.2 Uplink Payload Data Transmission -- 4.2.3 Downlink Payload Data Transmission -- 4.3 Fundamentals of Massive MIMO -- 4.3.1 Favorable Propagation -- 4.3.2 Channel Hardening -- 4.3.3 Use-and-Then-Forget Capacity Bounding Technique -- 4.3.4 Pilot Contamination -- 4.4 Important Topics for Future Research -- 4.4.1 Massive MIMO with Multiple-Antenna Users -- 4.4.2 Cell-Free Massive MIMO -- 4.4.3 Massive MIMO for Massive Access -- 4.5 Conclusion -- References -- 5 Fundamentals of Network Densification -- 5.1 Introduction to Densification -- 5.2 General System Model and Performance Metrics -- 5.3 Densification in the Conventional Scenario -- 5.3.1 Impact of Densification -- 5.3.2 Effect of the Dual-Slope Path-Loss Model -- 5.4 Factors Affecting the Densification Gain -- 5.4.1 Path-Loss Models -- Multi-slope Path-Loss Model -- Probabilistic Two-Regime Model -- General Multi-regime Multi-slope Probabilistic Path-Loss Model -- 3GPP-Model-1 -- 3GPP-Model-2 -- 5.4.2 Height Difference Between BS and UE Antennas -- 5.4.3 Scaling of the UE Density -- 5.4.4 Traffic Characteristics -- 5.4.5 Blockages -- 5.4.6 Deployment -- 5.4.7 Directional Communication -- 5.4.8 Association Criterion -- 5.4.9 Access Restrictions in Multi-tier Networks -- 5.5 Densification in Modern Networks -- 5.5.1 Finite UE Density Under Multi-slope Path-Loss -- 5.5.2 Height Difference Between BS and UE Under Multi-slope Path-Loss -- 5.5.3 Fixed UE Density with Non-zero Height Difference Under Multi-slope and Probabilistic Path-Loss -- 5.5.4 Access Restrictions with Finite UE Density -- 5.6 Conclusions -- References -- 6 UAV-Enabled Cellular Networks.
6.1 Introduction -- 6.1.1 History of UAV -- 6.1.2 UAV Communication Scenarios -- 6.1.3 UAV for Beyond 5G: 3GPP Studies -- 6.2 New Key Features of UAV Communications -- 6.2.1 Channel Modeling -- Path Loss Model -- Antenna Gain -- Small-Scale Channel Model -- 6.2.2 UAV Trajectory Design -- Problem Formulation -- 6.2.3 Interference-Aware Transmission Design -- 6.3 Research Challenges and Open Problems -- 6.3.1 Interference Management -- 6.3.2 3D Placement Optimization -- 6.3.3 Channel Modeling -- 6.3.4 Security and Privacy Issues -- References -- 7 6G Wireless Systems: Challenges and Opportunities -- 7.1 Introduction -- 7.2 6G Driving Applications, Metrics, and New Service Classes -- 7.2.1 6G: Driving Applications and Their Performance Requirements -- Multi-sensory XR Applications -- Connected Robotics and Autonomous Systems (CRAS) -- Wireless Brain-Computer Interactions (BCI) -- Blockchain and Distributed Ledger Technologies (DLT) -- 7.2.2 6G: Key Trends and Metrics -- 7.2.3 New Service Classes for 6G -- Mobile Broadband Reliable Low-Latency Communication -- Massive URLLC -- Human-Centric Services -- Multi-purpose 3CLS and Energy Services -- 7.3 6G: Enabling Technologies -- 7.3.1 6G at Above 6 GHz: From Small Cells Toward Tiny Cells -- 7.3.2 Transceivers with Integrated Frequency Bands -- 7.3.3 Communication with Large Reconfigurable Intelligent Surfaces -- 7.3.4 Edge AI -- 7.3.5 Integrated Terrestrial, Airborne, and Satellite Networks -- 7.3.6 Energy Transfer and Harvesting -- Beyond 6G -- 7.4 6G: Open Research Problems -- 7.4.1 3D Rate-Reliability-Latency Fundamentals -- 7.4.2 Leveraging Integrated, Heterogeneous High-Frequency Bands -- 7.4.3 3D Networking -- 7.4.4 Communications with RISs -- 7.4.5 AI for Wireless -- 7.4.6 QoPE Metrics -- 7.4.7 Joint Communication and Control -- 7.4.8 3CLS -- 7.4.9 Design of 6G Protocols.
7.4.10 RF and Non-RF Link Integration -- 7.4.11 Holographic Radio -- 7.5 Conclusions -- References -- Part II 5G New Radio Basics -- 8 A Guide to NG-RAN Architecture -- Acronyms -- 1 Introduction -- 2 NG-RAN Logical Architecture and Building Blocks -- 3 Deployment Flexibility and Architecture Options -- 3.1 A Brief Note on Dual Connectivity (DC) -- 3.2 Option 3 (EN-DC) -- 3.3 Option 4 (NE-DC) -- 3.4 Option 7 (NGEN-DC) -- 3.5 Option 2 -- 3.6 Option 5 -- 3.7 Migration from 4G to 5G -- 4 Splitting the RAN Node: From the Atom to the Matryoshka -- 4.1 CU-DU Split -- Description -- Impacts of the High Layer Split on Other RAN Functions -- Influences on LTE: eNB Architecture Evolution -- Previous Studies on Low Layer Split for the gNB -- 4.2 CP-UP Split -- 5 The Unified User Plane -- 6 Building on NG-RAN Architecture: IAB -- 7 Conclusions -- References -- 9 NR Physical Layer Overview -- 1 Waveform and Basic Structure of NR -- 2 Bandwidth Part (BWP) -- 3 Downlink Control Information -- 4 Uplink Control Information -- 5 Data Channels -- 5.1 Physical Downlink Shared Channel (PDSCH) -- 5.2 Physical Uplink Shared Channel (PUSCH) -- 6 Power Control -- 7 NR-LTE Interworking -- 8 UE Capabilities -- Reference -- 10 Channel Coding in NR -- 1 LDPC Coding in NR -- 1.1 Introduction -- 1.2 Coding Chain of NR Data Channel -- CRC Attachment -- Code Block Segmentation -- NR LDPC Structure -- Two Base Graphs -- 1.3 Rate Matching for LDPC Codes -- 1.4 Bit-Level Channel Interleaver for LDPC Codes -- 1.5 Performance of NR LDPC Codes -- 2 Polar Coding in NR -- 2.1 Introduction -- Polarization Theory -- 2.2 Coding for Downlink Control Information -- CRC Encoding for DCI -- CRC Interleaver -- Polar Encoding Kernel -- Rate Matcher -- Polar Coding for DCI -- Performance of NR Polar Codes in Downlink -- 2.3 Coding for Uplink Control Information -- CRC Encoding for UCI.
Parity-Check (PC) Bits -- Polar Coding for UCI -- 2.4 Polar Coding for PBCH -- References -- 11 5G NR Cell Search and Random Access -- 1 Cell Search -- 1.1 SS/PBCH Block -- Structure of SS/PBCH Block -- Time Domain Configuration for SS/PBCH Block -- Frequency Domain Configuration for SS/PBCH Block -- Details of PSS, SSS, and PBCH Design -- 1.2 Basic System Information Acquisition -- Information Carried on PBCH -- SIB 1 -- 2 Random Access -- 2.1 Random-Access Preamble -- Preamble Sequence Design -- PRACH Configuration -- Association Between SS/PBCH Block and Preamble Transmission -- 2.2 Random-Access Response -- 2.3 Scheduled Msg3 Transmission -- 2.4 Contention Resolution -- References -- 12 A Primer on Bandwidth Parts in 5G New Radio -- 1 Introduction -- 2 Basic Concepts of Bandwidth Parts -- 2.1 Fundamentals of Bandwidth Parts -- 2.2 Bandwidth Part Types -- 3 Bandwidth Part Configurations -- 3.1 Configuration of a Bandwidth Part with a Nonzero Index -- 3.2 Configuration of a Bandwidth Part with Index Zero -- 4 Bandwidth Part Switch -- 4.1 RRC Reconfiguration-Based Bandwidth Part Switch -- 4.2 DCI-Based Bandwidth Part Switch -- 4.3 Timer-Based Bandwidth Part Switch -- 5 UE Capabilities of Bandwidth Part Support -- 6 Use Cases of Bandwidth Parts -- 6.1 Flexible Bandwidth Support -- 6.2 UE Power Saving -- 6.3 Fast Change of UE Configuration -- 7 Conclusions -- References -- Part III 5G New Radio Evolution -- 13 Support of Ultra-reliable and Low-Latency Communications (URLLC) in NR -- 1 Introduction -- 2 Use Cases and Requirements -- 3 URLLC Support in NR Rel-15 -- 3.1 Support of Low Latency -- 3.2 Support of High Reliability -- 3.3 DL Pre-emption -- 4 URLLC Support in NR Rel-16 -- 4.1 New DCI Formats -- 4.2 Enhanced PDCCH Monitoring Capability -- 4.3 Sub-slot-Based HARQ-ACK Feedback -- 4.4 PUSCH Repetition Type B.
4.5 Enhanced Configured Grant and Enhanced SPS.
Record Nr. UNINA-9910484652803321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
6LoWPAN : the wireless embedded internet / / Zach Shelby, Carsten Bormann
6LoWPAN : the wireless embedded internet / / Zach Shelby, Carsten Bormann
Autore Shelby Zach
Edizione [1st edition]
Pubbl/distr/stampa Chichester, U.K. : , : J. Wiley, , c2009
Descrizione fisica 1 online resource (245 p.)
Disciplina 621.38212
621.384
Altri autori (Persone) BormannCarsten
Collana Wiley series on communications networking & distributed systems
Soggetto topico Wireless Internet
Wireless communication systems - Standards
Low voltage systems
ISBN 1-282-37952-6
9786612379529
0-470-68621-9
0-470-68622-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- List of Figures ix -- List of Tables xiii -- Foreword xv -- Preface xvii -- Acknowledgments xix -- 1 Introduction 1 -- 1.1 The Wireless Embedded Internet 3 -- 1.1.1 Why 6LoWPAN? 4 -- 1.1.2 6LoWPAN history and standardization 6 -- 1.1.3 Relation of 6LoWPAN toother trends 8 -- 1.1.4 Applications of 6LoWPAN 9 -- 1.1.5 Example: facility management 11 -- 1.2 The 6LoWPAN Architecture 13 -- 1.3 6LoWPAN Introduction 15 -- 1.3.1 The protocol stack 16 -- 1.3.2 Link layers for 6LoWPAN 17 -- 1.3.3 Addressing 19 -- 1.3.4 Header format 20 -- 1.3.5 Bootstrapping 20 -- 1.3.6 Mesh topologies 22 -- 1.3.7 Internet integration 23 -- 1.4 Network Example 24 -- 2 The 6LoWPAN Format 27 -- 2.1 Functions of an Adaptation Layer 28 -- 2.2 Assumptions About the Link Layer 29 -- 2.2.1 Link-layer technologies beyond IEEE 802.15.4 29 -- 2.2.2 Link-layer service model 30 -- 2.2.3 Link-layer addressing 31 -- 2.2.4 Link-layer management and operation 32 -- 2.3 The Basic 6LoWPAN Format 32 -- 2.4 Addressing 34 -- 2.5 Forwarding and Routing 37 -- 2.5.1 L2 forwarding (“Mesh-Under”) 38 -- 2.5.2 L3 routing (“Route-Over”) 40 -- 2.6 Header Compression 41 -- 2.6.1 Stateless header compression 43 -- 2.6.2 Context-based header compression 45 -- 2.7 Fragmentation and Reassembly 52 -- 2.7.1 The fragmentation format 55 -- 2.7.2 Avoiding the fragmentation performance penalty 59 -- 2.8 Multicast 59 -- 3 Bootstrapping and Security 63 -- 3.1 Commissioning 64 -- 3.2 Neighbor Discovery 66 -- 3.2.1 Forming addresses 67 -- 3.2.2 Registration 69 -- 3.2.3 Registration collisions 73 -- 3.2.4 Multihop registration 77 -- 3.2.5 Node operation 80 -- 3.2.6 Router operation 81 -- 3.2.7 Edge router operation 82 -- 3.3 Security 83 -- 3.3.1 Security objectives and threat models 84 -- 3.3.2 Layer2 mechanisms 85 -- 3.3.3 Layer3 mechanisms 87 -- 3.3.4 Key management 89 -- 4 Mobility and Routing 91 -- 4.1 Mobility 92 -- 4.1.1 Mobility types 92 -- 4.1.2 Solutions for mobility 94 -- 4.1.3 Application methods 96 -- 4.1.4 Mobile IPv6 97.
4.1.5 Proxy Home Agent 100 -- 4.1.6 ProxyMIPv6 100 -- 4.1.7 NEMO 102 -- 4.2 Routing 104 -- 4.2.1 Overview 104 -- 4.2.2 The role of Neighbor Discovery 107 -- 4.2.3 Routing requirements 108 -- 4.2.4 Route metrics 109 -- 4.2.5 MANET routing protocols 111 -- 4.2.6 The ROLL routing protocol 114 -- 4.2.7 Border routing 119 -- 4.3 IPv4 Interconnectivity 120 -- 4.3.1 IPv6 transition 121 -- 4.3.2 IPv6-in-IPv4 tunneling 122 -- 5 Application Protocols 125 -- 5.1 Introduction 126 -- 5.2 Design Issues 127 -- 5.2.1 Linklayer 129 -- 5.2.2 Networking 130 -- 5.2.3 Host issues 130 -- 5.2.4 Compression 131 -- 5.2.5 Security 131 -- 5.3 Protocol Paradigms 132 -- 5.3.1 End-to-end 132 -- 5.3.2 Real-time streaming and sessions 132 -- 5.3.3 Publish/subscribe 133 -- 5.3.4 Web service paradigms 134 -- 5.4 Common Protocols 134 -- 5.4.1 Web service protocols 135 -- 5.4.2 MQ telemetry transport for sensor networks (MQTT-S) 137 -- 5.4.3 ZigBee compact application protocol (CAP) 139 -- 5.4.4 Service discovery 141 -- 5.4.5 Simple network management protocol (SNMP) 142 -- 5.4.6 Real-time transport and sessions 143 -- 5.4.7 Industry-specific protocols 144 -- 6 Using 6LoWPAN 149 -- 6.1 Chip Solutions 150 -- 6.1.1 Single-chip solutions 150 -- 6.1.2 Two-chip solutions 151 -- 6.1.3 Network processor solutions 151 -- 6.2 Protocol Stacks 152 -- 6.2.1 ContikianduIPv6 153 -- 6.2.2 TinyOS and BLIP 153 -- 6.2.3 Sensinode NanoStack 154 -- 6.2.4 Jennic6LoWPAN 155 -- 6.2.5 Nivis ISA100 155 -- 6.3 Application Development 156 -- 6.4 Edge Router Integration 159 -- 7 System Examples 163 -- 7.1 ISA100 Industrial Automation 164 -- 7.1.1 Motivation for industrial wireless sensor networks 164 -- 7.1.2 Complications of the industrial space 165 -- 7.1.3 The ISA100.11a standard 166 -- 7.1.4 ISA100.11a data link layer 169 -- 7.2 Wireless RFID Infrastructure 170 -- 7.2.1 Technical overview 172 -- 7.2.2 Benefits from 6LoWPAN 173 -- 7.3 Building Energy Savings and Management 174 -- 7.3.1 Network architecture 174 -- 7.3.2 Technical overview 174.
7.3.3 Benefits from 6LoWPAN 175 -- 8 Conclusion 177 -- A IPv6 Reference 181 -- A.1 Notation 181 -- A.2 Addressing 182 -- A.3 IPv6 Neighbor Discovery 184 -- A.4 IPv6 Stateless Address Autoconfiguration 188 -- B IEEE 802.15.4 Reference 191 -- B.1 Introduction 191 -- B.2 Overall Packet Format 192 -- B.3 MAC-layer Security 194 -- List of Abbreviations 195 -- Glossary 203 -- References 209 -- Index 219.
Record Nr. UNINA-9910139968503321
Shelby Zach  
Chichester, U.K. : , : J. Wiley, , c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
6LoWPAN : the wireless embedded internet / / Zach Shelby, Carsten Bormann
6LoWPAN : the wireless embedded internet / / Zach Shelby, Carsten Bormann
Autore Shelby Zach
Edizione [1st edition]
Pubbl/distr/stampa Chichester, U.K. : , : J. Wiley, , c2009
Descrizione fisica 1 online resource (245 p.)
Disciplina 621.38212
621.384
Altri autori (Persone) BormannCarsten
Collana Wiley series on communications networking & distributed systems
Soggetto topico Wireless Internet
Wireless communication systems - Standards
Low voltage systems
ISBN 1-282-37952-6
9786612379529
0-470-68621-9
0-470-68622-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- List of Figures ix -- List of Tables xiii -- Foreword xv -- Preface xvii -- Acknowledgments xix -- 1 Introduction 1 -- 1.1 The Wireless Embedded Internet 3 -- 1.1.1 Why 6LoWPAN? 4 -- 1.1.2 6LoWPAN history and standardization 6 -- 1.1.3 Relation of 6LoWPAN toother trends 8 -- 1.1.4 Applications of 6LoWPAN 9 -- 1.1.5 Example: facility management 11 -- 1.2 The 6LoWPAN Architecture 13 -- 1.3 6LoWPAN Introduction 15 -- 1.3.1 The protocol stack 16 -- 1.3.2 Link layers for 6LoWPAN 17 -- 1.3.3 Addressing 19 -- 1.3.4 Header format 20 -- 1.3.5 Bootstrapping 20 -- 1.3.6 Mesh topologies 22 -- 1.3.7 Internet integration 23 -- 1.4 Network Example 24 -- 2 The 6LoWPAN Format 27 -- 2.1 Functions of an Adaptation Layer 28 -- 2.2 Assumptions About the Link Layer 29 -- 2.2.1 Link-layer technologies beyond IEEE 802.15.4 29 -- 2.2.2 Link-layer service model 30 -- 2.2.3 Link-layer addressing 31 -- 2.2.4 Link-layer management and operation 32 -- 2.3 The Basic 6LoWPAN Format 32 -- 2.4 Addressing 34 -- 2.5 Forwarding and Routing 37 -- 2.5.1 L2 forwarding (“Mesh-Under”) 38 -- 2.5.2 L3 routing (“Route-Over”) 40 -- 2.6 Header Compression 41 -- 2.6.1 Stateless header compression 43 -- 2.6.2 Context-based header compression 45 -- 2.7 Fragmentation and Reassembly 52 -- 2.7.1 The fragmentation format 55 -- 2.7.2 Avoiding the fragmentation performance penalty 59 -- 2.8 Multicast 59 -- 3 Bootstrapping and Security 63 -- 3.1 Commissioning 64 -- 3.2 Neighbor Discovery 66 -- 3.2.1 Forming addresses 67 -- 3.2.2 Registration 69 -- 3.2.3 Registration collisions 73 -- 3.2.4 Multihop registration 77 -- 3.2.5 Node operation 80 -- 3.2.6 Router operation 81 -- 3.2.7 Edge router operation 82 -- 3.3 Security 83 -- 3.3.1 Security objectives and threat models 84 -- 3.3.2 Layer2 mechanisms 85 -- 3.3.3 Layer3 mechanisms 87 -- 3.3.4 Key management 89 -- 4 Mobility and Routing 91 -- 4.1 Mobility 92 -- 4.1.1 Mobility types 92 -- 4.1.2 Solutions for mobility 94 -- 4.1.3 Application methods 96 -- 4.1.4 Mobile IPv6 97.
4.1.5 Proxy Home Agent 100 -- 4.1.6 ProxyMIPv6 100 -- 4.1.7 NEMO 102 -- 4.2 Routing 104 -- 4.2.1 Overview 104 -- 4.2.2 The role of Neighbor Discovery 107 -- 4.2.3 Routing requirements 108 -- 4.2.4 Route metrics 109 -- 4.2.5 MANET routing protocols 111 -- 4.2.6 The ROLL routing protocol 114 -- 4.2.7 Border routing 119 -- 4.3 IPv4 Interconnectivity 120 -- 4.3.1 IPv6 transition 121 -- 4.3.2 IPv6-in-IPv4 tunneling 122 -- 5 Application Protocols 125 -- 5.1 Introduction 126 -- 5.2 Design Issues 127 -- 5.2.1 Linklayer 129 -- 5.2.2 Networking 130 -- 5.2.3 Host issues 130 -- 5.2.4 Compression 131 -- 5.2.5 Security 131 -- 5.3 Protocol Paradigms 132 -- 5.3.1 End-to-end 132 -- 5.3.2 Real-time streaming and sessions 132 -- 5.3.3 Publish/subscribe 133 -- 5.3.4 Web service paradigms 134 -- 5.4 Common Protocols 134 -- 5.4.1 Web service protocols 135 -- 5.4.2 MQ telemetry transport for sensor networks (MQTT-S) 137 -- 5.4.3 ZigBee compact application protocol (CAP) 139 -- 5.4.4 Service discovery 141 -- 5.4.5 Simple network management protocol (SNMP) 142 -- 5.4.6 Real-time transport and sessions 143 -- 5.4.7 Industry-specific protocols 144 -- 6 Using 6LoWPAN 149 -- 6.1 Chip Solutions 150 -- 6.1.1 Single-chip solutions 150 -- 6.1.2 Two-chip solutions 151 -- 6.1.3 Network processor solutions 151 -- 6.2 Protocol Stacks 152 -- 6.2.1 ContikianduIPv6 153 -- 6.2.2 TinyOS and BLIP 153 -- 6.2.3 Sensinode NanoStack 154 -- 6.2.4 Jennic6LoWPAN 155 -- 6.2.5 Nivis ISA100 155 -- 6.3 Application Development 156 -- 6.4 Edge Router Integration 159 -- 7 System Examples 163 -- 7.1 ISA100 Industrial Automation 164 -- 7.1.1 Motivation for industrial wireless sensor networks 164 -- 7.1.2 Complications of the industrial space 165 -- 7.1.3 The ISA100.11a standard 166 -- 7.1.4 ISA100.11a data link layer 169 -- 7.2 Wireless RFID Infrastructure 170 -- 7.2.1 Technical overview 172 -- 7.2.2 Benefits from 6LoWPAN 173 -- 7.3 Building Energy Savings and Management 174 -- 7.3.1 Network architecture 174 -- 7.3.2 Technical overview 174.
7.3.3 Benefits from 6LoWPAN 175 -- 8 Conclusion 177 -- A IPv6 Reference 181 -- A.1 Notation 181 -- A.2 Addressing 182 -- A.3 IPv6 Neighbor Discovery 184 -- A.4 IPv6 Stateless Address Autoconfiguration 188 -- B IEEE 802.15.4 Reference 191 -- B.1 Introduction 191 -- B.2 Overall Packet Format 192 -- B.3 MAC-layer Security 194 -- List of Abbreviations 195 -- Glossary 203 -- References 209 -- Index 219.
Record Nr. UNINA-9910831038703321
Shelby Zach  
Chichester, U.K. : , : J. Wiley, , c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
6LoWPAN : the wireless embedded internet / / Zach Shelby and Carsten Bormann
6LoWPAN : the wireless embedded internet / / Zach Shelby and Carsten Bormann
Autore Shelby Zach
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : J. Wiley, 2009
Descrizione fisica 1 online resource (245 p.)
Disciplina 621.384
Altri autori (Persone) BormannCarsten
Collana Wiley series on communications networking & distributed systems
Soggetto topico Wireless Internet
Wireless communication systems - Standards
Low voltage systems
ISBN 1-282-37952-6
9786612379529
0-470-68621-9
0-470-68622-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- List of Figures ix -- List of Tables xiii -- Foreword xv -- Preface xvii -- Acknowledgments xix -- 1 Introduction 1 -- 1.1 The Wireless Embedded Internet 3 -- 1.1.1 Why 6LoWPAN? 4 -- 1.1.2 6LoWPAN history and standardization 6 -- 1.1.3 Relation of 6LoWPAN toother trends 8 -- 1.1.4 Applications of 6LoWPAN 9 -- 1.1.5 Example: facility management 11 -- 1.2 The 6LoWPAN Architecture 13 -- 1.3 6LoWPAN Introduction 15 -- 1.3.1 The protocol stack 16 -- 1.3.2 Link layers for 6LoWPAN 17 -- 1.3.3 Addressing 19 -- 1.3.4 Header format 20 -- 1.3.5 Bootstrapping 20 -- 1.3.6 Mesh topologies 22 -- 1.3.7 Internet integration 23 -- 1.4 Network Example 24 -- 2 The 6LoWPAN Format 27 -- 2.1 Functions of an Adaptation Layer 28 -- 2.2 Assumptions About the Link Layer 29 -- 2.2.1 Link-layer technologies beyond IEEE 802.15.4 29 -- 2.2.2 Link-layer service model 30 -- 2.2.3 Link-layer addressing 31 -- 2.2.4 Link-layer management and operation 32 -- 2.3 The Basic 6LoWPAN Format 32 -- 2.4 Addressing 34 -- 2.5 Forwarding and Routing 37 -- 2.5.1 L2 forwarding (“Mesh-Under”) 38 -- 2.5.2 L3 routing (“Route-Over”) 40 -- 2.6 Header Compression 41 -- 2.6.1 Stateless header compression 43 -- 2.6.2 Context-based header compression 45 -- 2.7 Fragmentation and Reassembly 52 -- 2.7.1 The fragmentation format 55 -- 2.7.2 Avoiding the fragmentation performance penalty 59 -- 2.8 Multicast 59 -- 3 Bootstrapping and Security 63 -- 3.1 Commissioning 64 -- 3.2 Neighbor Discovery 66 -- 3.2.1 Forming addresses 67 -- 3.2.2 Registration 69 -- 3.2.3 Registration collisions 73 -- 3.2.4 Multihop registration 77 -- 3.2.5 Node operation 80 -- 3.2.6 Router operation 81 -- 3.2.7 Edge router operation 82 -- 3.3 Security 83 -- 3.3.1 Security objectives and threat models 84 -- 3.3.2 Layer2 mechanisms 85 -- 3.3.3 Layer3 mechanisms 87 -- 3.3.4 Key management 89 -- 4 Mobility and Routing 91 -- 4.1 Mobility 92 -- 4.1.1 Mobility types 92 -- 4.1.2 Solutions for mobility 94 -- 4.1.3 Application methods 96 -- 4.1.4 Mobile IPv6 97.
4.1.5 Proxy Home Agent 100 -- 4.1.6 ProxyMIPv6 100 -- 4.1.7 NEMO 102 -- 4.2 Routing 104 -- 4.2.1 Overview 104 -- 4.2.2 The role of Neighbor Discovery 107 -- 4.2.3 Routing requirements 108 -- 4.2.4 Route metrics 109 -- 4.2.5 MANET routing protocols 111 -- 4.2.6 The ROLL routing protocol 114 -- 4.2.7 Border routing 119 -- 4.3 IPv4 Interconnectivity 120 -- 4.3.1 IPv6 transition 121 -- 4.3.2 IPv6-in-IPv4 tunneling 122 -- 5 Application Protocols 125 -- 5.1 Introduction 126 -- 5.2 Design Issues 127 -- 5.2.1 Linklayer 129 -- 5.2.2 Networking 130 -- 5.2.3 Host issues 130 -- 5.2.4 Compression 131 -- 5.2.5 Security 131 -- 5.3 Protocol Paradigms 132 -- 5.3.1 End-to-end 132 -- 5.3.2 Real-time streaming and sessions 132 -- 5.3.3 Publish/subscribe 133 -- 5.3.4 Web service paradigms 134 -- 5.4 Common Protocols 134 -- 5.4.1 Web service protocols 135 -- 5.4.2 MQ telemetry transport for sensor networks (MQTT-S) 137 -- 5.4.3 ZigBee compact application protocol (CAP) 139 -- 5.4.4 Service discovery 141 -- 5.4.5 Simple network management protocol (SNMP) 142 -- 5.4.6 Real-time transport and sessions 143 -- 5.4.7 Industry-specific protocols 144 -- 6 Using 6LoWPAN 149 -- 6.1 Chip Solutions 150 -- 6.1.1 Single-chip solutions 150 -- 6.1.2 Two-chip solutions 151 -- 6.1.3 Network processor solutions 151 -- 6.2 Protocol Stacks 152 -- 6.2.1 ContikianduIPv6 153 -- 6.2.2 TinyOS and BLIP 153 -- 6.2.3 Sensinode NanoStack 154 -- 6.2.4 Jennic6LoWPAN 155 -- 6.2.5 Nivis ISA100 155 -- 6.3 Application Development 156 -- 6.4 Edge Router Integration 159 -- 7 System Examples 163 -- 7.1 ISA100 Industrial Automation 164 -- 7.1.1 Motivation for industrial wireless sensor networks 164 -- 7.1.2 Complications of the industrial space 165 -- 7.1.3 The ISA100.11a standard 166 -- 7.1.4 ISA100.11a data link layer 169 -- 7.2 Wireless RFID Infrastructure 170 -- 7.2.1 Technical overview 172 -- 7.2.2 Benefits from 6LoWPAN 173 -- 7.3 Building Energy Savings and Management 174 -- 7.3.1 Network architecture 174 -- 7.3.2 Technical overview 174.
7.3.3 Benefits from 6LoWPAN 175 -- 8 Conclusion 177 -- A IPv6 Reference 181 -- A.1 Notation 181 -- A.2 Addressing 182 -- A.3 IPv6 Neighbor Discovery 184 -- A.4 IPv6 Stateless Address Autoconfiguration 188 -- B IEEE 802.15.4 Reference 191 -- B.1 Introduction 191 -- B.2 Overall Packet Format 192 -- B.3 MAC-layer Security 194 -- List of Abbreviations 195 -- Glossary 203 -- References 209 -- Index 219.
Record Nr. UNINA-9910878077903321
Shelby Zach  
Chichester, West Sussex, U.K. ; ; Hoboken, NJ, : J. Wiley, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
ANSI C63.19-2001 : American National Standard for Methods of Measurement of Compatibility Between Wireless Communication Devices and Hearing Aids / / Institute of Electrical and Electronics Engineers (IEEE)
ANSI C63.19-2001 : American National Standard for Methods of Measurement of Compatibility Between Wireless Communication Devices and Hearing Aids / / Institute of Electrical and Electronics Engineers (IEEE)
Pubbl/distr/stampa New York : , : Institute of Electrical and Electronics Engineers (IEEE), , 2001
Descrizione fisica 1 online resource (vi, 96 pages) : illustrations
Disciplina 621.384
Soggetto topico Personal communication service systems - Standards
Wireless communication systems - Standards
ISBN 0-7381-3020-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti ANSI C63.19-2001
Record Nr. UNISA-996279855703316
New York : , : Institute of Electrical and Electronics Engineers (IEEE), , 2001
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
ANSI C63.19-2001 : American National Standard for Methods of Measurement of Compatibility Between Wireless Communication Devices and Hearing Aids / / Institute of Electrical and Electronics Engineers (IEEE)
ANSI C63.19-2001 : American National Standard for Methods of Measurement of Compatibility Between Wireless Communication Devices and Hearing Aids / / Institute of Electrical and Electronics Engineers (IEEE)
Pubbl/distr/stampa New York : , : Institute of Electrical and Electronics Engineers (IEEE), , 2001
Descrizione fisica 1 online resource (vi, 96 pages) : illustrations
Disciplina 621.384
Soggetto topico Personal communication service systems - Standards
Wireless communication systems - Standards
ISBN 0-7381-3020-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti ANSI C63.19-2001
Record Nr. UNINA-9910147235503321
New York : , : Institute of Electrical and Electronics Engineers (IEEE), , 2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Error control coding for B3G/4G wireless systems : paving the way to IMT-advanced standards / / edited by Thierry Lestable, Moshe Ran
Error control coding for B3G/4G wireless systems : paving the way to IMT-advanced standards / / edited by Thierry Lestable, Moshe Ran
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, U.K. : , : Wiley, , 2011
Descrizione fisica 1 online resource (290 p.)
Disciplina 621.382/1
Altri autori (Persone) LestableThierry
RanMoshe
Collana Wiley-wwrf series
Soggetto topico Error-correcting codes (Information theory)
Wireless communication systems - Standards
ISBN 1-283-37294-0
9786613372949
0-470-97759-0
0-470-97521-0
0-470-97522-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Editors. -- Contributors. -- Preface. -- Acknowledgments. -- Abbreviations. -- 1. Coding (Gerhard Bauch, Claude Berrou, David Declercq, Aledandre Graell I. Amat, Youssouf Ould-Cheikh-Mouhamedou, Yannick Saouter, Jossy Sayir, and Marcos B. S. Tavares). -- 1.1 General Code Types. -- 1.2 Designing Code Based on Graphs. -- 1.3 Pseudorandom Designs. -- 1.4 Repeat Accumulate Codes. -- 1.5 Binary versus Nonbinary. -- 1.6 Performance Results of Nonbinary LDPC Codes. -- 1.7 Three-Dimensional (3D) Turbo Codes. -- 1.8 Conclusions. -- 2. Decoding (Moshe Ran, Carlos De Segovia, and Omer Ran). -- 2.1 Algebraic Soft-Decision (ASD) and Reliability-Based Decoders. -- 2.2 Graph versus Trellis Decoding Algorithms. -- 3. Incremental Redundancy for Coding (Stefania Sesia and Charly Pouliat). -- 3.1 Introduction. -- 3.2 Retransmission Protocols (ARQ). -- 3.3 HARQ Schemes. -- 3.4 Design of Hybrid ARQ Type II. -- 3.5 Code Design. -- 3.6 Generalization of the Mutual Information Evolution for Incremental Redundancy Protocols. -- 3.7 ARQ/HARQ in the Standards. -- 3.8 Conclusions. -- 4. Architecture and Hardware Requirements (Frank Kienle). -- 4.1 Turbo Decoder Implementation. -- 4.2 LDPC Decoder Architectures. -- 5. Turbo-Principle Extensions (Isabelle Siaud, Ming Jiang, Anne-Marie Ulmer-Moll, Maryline Hľard, Thierry Lestable, and Carlos De Segovia). -- 5.1 Introduction. -- 5.2 From Turbo Code to Advanced Iterative Receivers. -- 5.3 Turbo-Based Interleaving Techniques. -- 5.4 Turbo-MIMO Techniques. -- 5.5 Conclusions. -- 6. Standardization (Marie-Hľn̈e Hamon, Thierry Lestable, and Isabelle Siaud). -- 6.1 3GPP Systems: UMTS and LTE. -- 6.2 IEEE 802.16/WiMAX. -- 6.3 IEEE 802.1 1n. -- 6.4 Satellite (DVB-RCS, DVB-S2). -- 6.5 Wireless Rural Area Network: The IEEE802.22 standard [IEEE802_22]. -- 6.6 Others. -- Index.
Record Nr. UNINA-9910133576403321
Chichester, West Sussex, U.K. : , : Wiley, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Error control coding for B3G/4G wireless systems : paving the way to IMT-advanced standards / / edited by Thierry Lestable, Moshe Ran
Error control coding for B3G/4G wireless systems : paving the way to IMT-advanced standards / / edited by Thierry Lestable, Moshe Ran
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, U.K., : Wiley, 2011
Descrizione fisica 1 online resource (290 p.)
Disciplina 621.382/1
Altri autori (Persone) LestableThierry
RanMoshe
Collana Wiley-WWRF series
Soggetto topico Error-correcting codes (Information theory)
Wireless communication systems - Standards
ISBN 1-283-37294-0
9786613372949
0-470-97759-0
0-470-97521-0
0-470-97522-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Editors. -- Contributors. -- Preface. -- Acknowledgments. -- Abbreviations. -- 1. Coding (Gerhard Bauch, Claude Berrou, David Declercq, Aledandre Graell I. Amat, Youssouf Ould-Cheikh-Mouhamedou, Yannick Saouter, Jossy Sayir, and Marcos B. S. Tavares). -- 1.1 General Code Types. -- 1.2 Designing Code Based on Graphs. -- 1.3 Pseudorandom Designs. -- 1.4 Repeat Accumulate Codes. -- 1.5 Binary versus Nonbinary. -- 1.6 Performance Results of Nonbinary LDPC Codes. -- 1.7 Three-Dimensional (3D) Turbo Codes. -- 1.8 Conclusions. -- 2. Decoding (Moshe Ran, Carlos De Segovia, and Omer Ran). -- 2.1 Algebraic Soft-Decision (ASD) and Reliability-Based Decoders. -- 2.2 Graph versus Trellis Decoding Algorithms. -- 3. Incremental Redundancy for Coding (Stefania Sesia and Charly Pouliat). -- 3.1 Introduction. -- 3.2 Retransmission Protocols (ARQ). -- 3.3 HARQ Schemes. -- 3.4 Design of Hybrid ARQ Type II. -- 3.5 Code Design. -- 3.6 Generalization of the Mutual Information Evolution for Incremental Redundancy Protocols. -- 3.7 ARQ/HARQ in the Standards. -- 3.8 Conclusions. -- 4. Architecture and Hardware Requirements (Frank Kienle). -- 4.1 Turbo Decoder Implementation. -- 4.2 LDPC Decoder Architectures. -- 5. Turbo-Principle Extensions (Isabelle Siaud, Ming Jiang, Anne-Marie Ulmer-Moll, Maryline Hľard, Thierry Lestable, and Carlos De Segovia). -- 5.1 Introduction. -- 5.2 From Turbo Code to Advanced Iterative Receivers. -- 5.3 Turbo-Based Interleaving Techniques. -- 5.4 Turbo-MIMO Techniques. -- 5.5 Conclusions. -- 6. Standardization (Marie-Hľn̈e Hamon, Thierry Lestable, and Isabelle Siaud). -- 6.1 3GPP Systems: UMTS and LTE. -- 6.2 IEEE 802.16/WiMAX. -- 6.3 IEEE 802.1 1n. -- 6.4 Satellite (DVB-RCS, DVB-S2). -- 6.5 Wireless Rural Area Network: The IEEE802.22 standard [IEEE802_22]. -- 6.6 Others. -- Index.
Record Nr. UNINA-9910817655603321
Chichester, West Sussex, U.K., : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of 5G mobile networks / / edited by Jonathan Rodriguez
Fundamentals of 5G mobile networks / / edited by Jonathan Rodriguez
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, United Kingdom : , : Wiley, , 2015
Descrizione fisica 1 online resource (336 p.)
Disciplina 621.3845/6
Soggetto topico Mobile communication systems - Technological innovations
Wireless communication systems - Standards
ISBN 1-118-86747-5
1-118-86746-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Contributor Biographies xiii -- Preface xxix -- Acknowledgements xxxi -- Introduction xxxiii -- 1 Drivers for 5G: The 'Pervasive Connected World' 1 -- 1.1 Introduction 1 -- 1.2 Historical Trend of Wireless Communications 2 -- 1.3 Evolution of LTE Technology to Beyond 4G 4 -- 1.4 5G Roadmap 5 -- 1.5 10 Pillars of 5G 6 -- 1.5.1 Evolution of Existing RATs 6 -- 1.5.2 Hyperdense Small?]Cell Deployment 7 -- 1.5.3 Self?]Organising Network 8 -- 1.5.4 Machine Type Communication 8 -- 1.5.5 Developing Millimetre?]Wave RATs 8 -- 1.5.6 Redesigning Backhaul Links 9 -- 1.5.7 Energy Efficiency 9 -- 1.5.8 Allocation of New Spectrum for 5G 10 -- 1.5.9 Spectrum Sharing 10 -- 1.5.10 RAN Virtualisation 10 -- 1.6 5G in Europe 11 -- 1.6.1 Horizon 2020 Framework Programme 11 -- 1.6.2 5G Infrastructure PPP 12 -- 1.6.3 METIS Project 13 -- 1.6.4 5G Innovation Centre 14 -- 1.6.5 Visions of Companies 14 -- 1.7 5G in North America 15 -- 1.7.1 Academy Research 15 -- 1.7.2 Company R&D 15 -- 1.8 5G in Asia 16 -- 1.8.1 5G in China 16 -- 1.8.2 5G in South Korea 19 -- 1.8.3 5G in Japan 21 -- 1.9 5G Architecture 23 -- 1.10 Conclusion 24 -- Acknowledgements 25 -- References 25 -- 2 The 5G Internet 29 -- 2.1 Introduction 29 -- 2.2 Internet of Things and Context?]Awareness 32 -- 2.2.1 Internet of Things 33 -- 2.2.2 Context?]Awareness 34 -- 2.3 Networking Reconfiguration and Virtualisation Support 35 -- 2.3.1 Software Defined Networking 36 -- 2.3.2 Network Function Virtualisation 38 -- 2.4 Mobility 40 -- 2.4.1 An Evolutionary Approach from the Current Internet 40 -- 2.4.2 A Clean?]Slate Approach 45 -- 2.5 Quality of Service Control 47 -- 2.5.1 Network Resource Provisioning 47 -- 2.5.2 Aggregate Resource Provisioning 49 -- 2.6 Emerging Approach for Resource Over?]Provisioning 50 -- 2.6.1 Control Information Repository 53 -- 2.6.2 Service Admission Control Policies 53 -- 2.6.3 Network Resource Provisioning 53 -- 2.6.4 Control Enforcement Functions 54 -- 2.6.5 Network Configurations 54 -- 2.6.6 Network Operations 55.
2.7 Summary 57 -- Acknowledgements 57 -- References 58 -- 3 Small Cells for 5G Mobile Networks 63 -- 3.1 Introduction 63 -- 3.2 What are Small Cells? 64 -- 3.2.1 WiFi and Femtocells as Candidate Small?]Cell Technologies 66 -- 3.2.2 WiFi and Femto Performance / Indoors vs Outdoors 70 -- 3.3 Capacity Limits and Achievable Gains with Densification 73 -- 3.3.1 Gains with Multi?]Antenna Techniques 73 -- 3.3.2 Gains with Small Cells 76 -- 3.4 Mobile Data Demand 81 -- 3.4.1 Approach and Methodology 81 -- 3.5 Demand vs Capacity 81 -- 3.6 Small?]Cell Challenges 93 -- 3.7 Conclusions and Future Directions 97 -- References 99 -- 4 Cooperation for Next Generation Wireless Networks 105 -- 4.1 Introduction 105 -- 4.2 Cooperative Diversity and Relaying Strategies 107 -- 4.2.1 Cooperation and Network Coding 107 -- 4.2.2 Cooperative ARQ MAC Protocols 108 -- 4.3 PHY Layer Impact on MAC Protocol Analysis 110 -- 4.3.1 Impact of Fast Fading and Shadowing on Packet Reception for QoS Guarantee 111 -- 4.3.2 Impact of Shadowing Spatial Correlation 112 -- 4.4 Case Study: NCCARQ 113 -- 4.4.1 NCCARQ Overview 113 -- 4.4.2 PHY Layer Impact 114 -- 4.5 Performance Evaluation 116 -- 4.5.1 Simulation Scenario 116 -- 4.5.2 Simulation Results 117 -- 4.6 Conclusion 122 -- Acknowledgements 122 -- References 122 -- 5 Mobile Clouds: Technology and Services for Future Communication Platforms 125 -- 5.1 Introduction 125 -- 5.2 The Mobile Cloud 127 -- 5.2.1 User Resources 129 -- 5.2.2 Software Resources 130 -- 5.2.3 Hardware Resources 131 -- 5.2.4 Networking Resources 132 -- 5.3 Mobile Cloud Enablers 133 -- 5.3.1 The Mobile User Domain 133 -- 5.3.2 Wireless Technologies 135 -- 5.3.3 Software and Middleware 139 -- 5.4 Network Coding 140 -- 5.5 Summary 145 -- References 145 -- 6 Cognitive Radio for 5G Wireless Networks 149 -- 6.1 Introduction 149 -- 6.2 Overview of Cognitive Radio Technology in 5G Wireless 150 -- 6.3 Spectrum Optimisation using Cognitive Radio 152 -- 6.4 Relevant Spectrum Optimisation Literature in 5G 152.
6.4.1 Dynamic Spectrum Access 152 -- 6.4.2 Spectrum Regulatory Policy 153 -- 6.4.3 Marketing Policy and Model 154 -- 6.5 Cognitive Radio and Carrier Aggregation 154 -- 6.6 Energy?]Efficient Cognitive Radio Technology 155 -- 6.7 Key Requirements and Challenges for 5G Cognitive Terminals 156 -- 6.7.1 5G Devices as Cognitive Radio Terminals 157 -- 6.7.2 5G Cognitive Terminal Challenges 159 -- 6.8 Summary 162 -- References 162 -- 7 The Wireless Spectrum Crunch: White Spaces for 5G? 165 -- 7.1 Introduction 165 -- 7.2 Background 168 -- 7.2.1 Early Spectrum Management 168 -- 7.2.2 History of TV White Spaces 169 -- 7.2.3 History of Radar White Spaces 171 -- 7.3 TV White Space Technology 171 -- 7.3.1 Standards 172 -- 7.3.2 Approaches to White Space 173 -- 7.4 White Space Spectrum Opportunities and Challenges 175 -- 7.5 TV White Space Applications 178 -- 7.5.1 Fixed Wireless Networking 180 -- 7.5.2 Public Safety Applications 181 -- 7.5.3 Mobile Broadband 182 -- 7.6 International Efforts 185 -- 7.7 Role of WS in 5G 186 -- 7.8 Conclusion 186 -- References 187 -- 8 Towards a Unified 5G Broadcast?]Broadband Architecture 191 -- 8.1 Introduction 191 -- 8.2 Background 192 -- 8.3 Challenges to Be Addressed 195 -- 8.3.1 The Spectrum Dimension 195 -- 8.3.2 The Risk of Fragmentation of the Terminal Market 196 -- 8.3.3 The Change in TV Consumer Patterns and the Need for a Flexible Approach 197 -- 8.3.4 Business?]Related Hurdles 198 -- 8.3.5 Societal Requirement: TV Broadcasting as a Public Service Media in Europe 198 -- 8.4 Candidate Network Architectures for a BC?]BB Convergent Solution 199 -- 8.4.1 Solution 1: Cellular Broadcasting in the TV Spectrum 200 -- 8.4.2 Solution 2: Hybrid Network Approach / Using DVB?]T2 FEFs for LTE Transmission 201 -- 8.4.3 Solution 3: Next Generation Common Broadcasting System 201 -- 8.5 The BC?]BB Study: What Needs to Be Done 204 -- 8.5.1 TV and Video Future Consumption Models in Europe 204 -- 8.5.2 BC?]BB Architecture Options 204 -- 8.5.3 Large?]Scale Simulation and Assessment of BC?]BB Convergent Options 204.
8.5.4 Feasibility Study 205 -- 8.6 Conclusion 205 -- References 206 -- 9 Security for 5G Communications 207 -- 9.1 Introduction 207 -- 9.2 Overview of a Potential 5G Communications System Architecture 208 -- 9.3 Security Issues and Challenges in 5G Communications Systems 209 -- 9.3.1 User Equipment 210 -- 9.3.2 Access Networks 212 -- 9.3.3 Mobile Operator's Core Network 216 -- 9.3.4 External IP Networks 217 -- 9.4 Summary 218 -- References 219 -- 10 SON Evolution for 5G Mobile Networks 221 -- 10.1 Introduction 221 -- 10.2 SON in UMTS and LTE 222 -- 10.3 The Need for SON in 5G 231 -- 10.4 Evolution towards Small?]Cell Dominant HetNets 236 -- 10.4.1 Towards a New SON Architecture for 5G 237 -- 10.5 Conclusion 239 -- References 240 -- 11 Green Flexible RF for 5G 241 -- 11.1 Introduction 241 -- 11.2 Radio System Design 242 -- 11.2.1 Antenna Design for 5G 242 -- 11.2.2 Passive Front?]End Design Using SIW for 5G Application 254 -- 11.2.3 RF Power Amplifiers 257 -- 11.3 Nonlinear Crosstalk in MIMO Systems 264 -- 11.4 Summary 269 -- Acknowledgements 269 -- References 270 -- 12 Conclusion and Future Outlook 273 -- 12.1 Design Drivers for Next?]Generation Networks 273 -- 12.2 5G: A Green Inter?]networking Experience 274 -- 12.2.1 Emerging Approaches to Allow Drastic Reduction in the Signalling Overhead 278 -- 12.3 A Vision for 5G Mobile 278 -- 12.3.1 Mobile Small Cells the Way Forward? 279 -- 12.4 Final Remarks 282 -- References 282 -- Index 285.
Record Nr. UNINA-9910140453003321
Chichester, West Sussex, United Kingdom : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of 5G mobile networks / / edited by Jonathan Rodriguez
Fundamentals of 5G mobile networks / / edited by Jonathan Rodriguez
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, United Kingdom : , : Wiley, , 2015
Descrizione fisica 1 online resource (336 p.)
Disciplina 621.3845/6
Soggetto topico Mobile communication systems - Technological innovations
Wireless communication systems - Standards
ISBN 1-118-86747-5
1-118-86746-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Contributor Biographies xiii -- Preface xxix -- Acknowledgements xxxi -- Introduction xxxiii -- 1 Drivers for 5G: The 'Pervasive Connected World' 1 -- 1.1 Introduction 1 -- 1.2 Historical Trend of Wireless Communications 2 -- 1.3 Evolution of LTE Technology to Beyond 4G 4 -- 1.4 5G Roadmap 5 -- 1.5 10 Pillars of 5G 6 -- 1.5.1 Evolution of Existing RATs 6 -- 1.5.2 Hyperdense Small?]Cell Deployment 7 -- 1.5.3 Self?]Organising Network 8 -- 1.5.4 Machine Type Communication 8 -- 1.5.5 Developing Millimetre?]Wave RATs 8 -- 1.5.6 Redesigning Backhaul Links 9 -- 1.5.7 Energy Efficiency 9 -- 1.5.8 Allocation of New Spectrum for 5G 10 -- 1.5.9 Spectrum Sharing 10 -- 1.5.10 RAN Virtualisation 10 -- 1.6 5G in Europe 11 -- 1.6.1 Horizon 2020 Framework Programme 11 -- 1.6.2 5G Infrastructure PPP 12 -- 1.6.3 METIS Project 13 -- 1.6.4 5G Innovation Centre 14 -- 1.6.5 Visions of Companies 14 -- 1.7 5G in North America 15 -- 1.7.1 Academy Research 15 -- 1.7.2 Company R&D 15 -- 1.8 5G in Asia 16 -- 1.8.1 5G in China 16 -- 1.8.2 5G in South Korea 19 -- 1.8.3 5G in Japan 21 -- 1.9 5G Architecture 23 -- 1.10 Conclusion 24 -- Acknowledgements 25 -- References 25 -- 2 The 5G Internet 29 -- 2.1 Introduction 29 -- 2.2 Internet of Things and Context?]Awareness 32 -- 2.2.1 Internet of Things 33 -- 2.2.2 Context?]Awareness 34 -- 2.3 Networking Reconfiguration and Virtualisation Support 35 -- 2.3.1 Software Defined Networking 36 -- 2.3.2 Network Function Virtualisation 38 -- 2.4 Mobility 40 -- 2.4.1 An Evolutionary Approach from the Current Internet 40 -- 2.4.2 A Clean?]Slate Approach 45 -- 2.5 Quality of Service Control 47 -- 2.5.1 Network Resource Provisioning 47 -- 2.5.2 Aggregate Resource Provisioning 49 -- 2.6 Emerging Approach for Resource Over?]Provisioning 50 -- 2.6.1 Control Information Repository 53 -- 2.6.2 Service Admission Control Policies 53 -- 2.6.3 Network Resource Provisioning 53 -- 2.6.4 Control Enforcement Functions 54 -- 2.6.5 Network Configurations 54 -- 2.6.6 Network Operations 55.
2.7 Summary 57 -- Acknowledgements 57 -- References 58 -- 3 Small Cells for 5G Mobile Networks 63 -- 3.1 Introduction 63 -- 3.2 What are Small Cells? 64 -- 3.2.1 WiFi and Femtocells as Candidate Small?]Cell Technologies 66 -- 3.2.2 WiFi and Femto Performance / Indoors vs Outdoors 70 -- 3.3 Capacity Limits and Achievable Gains with Densification 73 -- 3.3.1 Gains with Multi?]Antenna Techniques 73 -- 3.3.2 Gains with Small Cells 76 -- 3.4 Mobile Data Demand 81 -- 3.4.1 Approach and Methodology 81 -- 3.5 Demand vs Capacity 81 -- 3.6 Small?]Cell Challenges 93 -- 3.7 Conclusions and Future Directions 97 -- References 99 -- 4 Cooperation for Next Generation Wireless Networks 105 -- 4.1 Introduction 105 -- 4.2 Cooperative Diversity and Relaying Strategies 107 -- 4.2.1 Cooperation and Network Coding 107 -- 4.2.2 Cooperative ARQ MAC Protocols 108 -- 4.3 PHY Layer Impact on MAC Protocol Analysis 110 -- 4.3.1 Impact of Fast Fading and Shadowing on Packet Reception for QoS Guarantee 111 -- 4.3.2 Impact of Shadowing Spatial Correlation 112 -- 4.4 Case Study: NCCARQ 113 -- 4.4.1 NCCARQ Overview 113 -- 4.4.2 PHY Layer Impact 114 -- 4.5 Performance Evaluation 116 -- 4.5.1 Simulation Scenario 116 -- 4.5.2 Simulation Results 117 -- 4.6 Conclusion 122 -- Acknowledgements 122 -- References 122 -- 5 Mobile Clouds: Technology and Services for Future Communication Platforms 125 -- 5.1 Introduction 125 -- 5.2 The Mobile Cloud 127 -- 5.2.1 User Resources 129 -- 5.2.2 Software Resources 130 -- 5.2.3 Hardware Resources 131 -- 5.2.4 Networking Resources 132 -- 5.3 Mobile Cloud Enablers 133 -- 5.3.1 The Mobile User Domain 133 -- 5.3.2 Wireless Technologies 135 -- 5.3.3 Software and Middleware 139 -- 5.4 Network Coding 140 -- 5.5 Summary 145 -- References 145 -- 6 Cognitive Radio for 5G Wireless Networks 149 -- 6.1 Introduction 149 -- 6.2 Overview of Cognitive Radio Technology in 5G Wireless 150 -- 6.3 Spectrum Optimisation using Cognitive Radio 152 -- 6.4 Relevant Spectrum Optimisation Literature in 5G 152.
6.4.1 Dynamic Spectrum Access 152 -- 6.4.2 Spectrum Regulatory Policy 153 -- 6.4.3 Marketing Policy and Model 154 -- 6.5 Cognitive Radio and Carrier Aggregation 154 -- 6.6 Energy?]Efficient Cognitive Radio Technology 155 -- 6.7 Key Requirements and Challenges for 5G Cognitive Terminals 156 -- 6.7.1 5G Devices as Cognitive Radio Terminals 157 -- 6.7.2 5G Cognitive Terminal Challenges 159 -- 6.8 Summary 162 -- References 162 -- 7 The Wireless Spectrum Crunch: White Spaces for 5G? 165 -- 7.1 Introduction 165 -- 7.2 Background 168 -- 7.2.1 Early Spectrum Management 168 -- 7.2.2 History of TV White Spaces 169 -- 7.2.3 History of Radar White Spaces 171 -- 7.3 TV White Space Technology 171 -- 7.3.1 Standards 172 -- 7.3.2 Approaches to White Space 173 -- 7.4 White Space Spectrum Opportunities and Challenges 175 -- 7.5 TV White Space Applications 178 -- 7.5.1 Fixed Wireless Networking 180 -- 7.5.2 Public Safety Applications 181 -- 7.5.3 Mobile Broadband 182 -- 7.6 International Efforts 185 -- 7.7 Role of WS in 5G 186 -- 7.8 Conclusion 186 -- References 187 -- 8 Towards a Unified 5G Broadcast?]Broadband Architecture 191 -- 8.1 Introduction 191 -- 8.2 Background 192 -- 8.3 Challenges to Be Addressed 195 -- 8.3.1 The Spectrum Dimension 195 -- 8.3.2 The Risk of Fragmentation of the Terminal Market 196 -- 8.3.3 The Change in TV Consumer Patterns and the Need for a Flexible Approach 197 -- 8.3.4 Business?]Related Hurdles 198 -- 8.3.5 Societal Requirement: TV Broadcasting as a Public Service Media in Europe 198 -- 8.4 Candidate Network Architectures for a BC?]BB Convergent Solution 199 -- 8.4.1 Solution 1: Cellular Broadcasting in the TV Spectrum 200 -- 8.4.2 Solution 2: Hybrid Network Approach / Using DVB?]T2 FEFs for LTE Transmission 201 -- 8.4.3 Solution 3: Next Generation Common Broadcasting System 201 -- 8.5 The BC?]BB Study: What Needs to Be Done 204 -- 8.5.1 TV and Video Future Consumption Models in Europe 204 -- 8.5.2 BC?]BB Architecture Options 204 -- 8.5.3 Large?]Scale Simulation and Assessment of BC?]BB Convergent Options 204.
8.5.4 Feasibility Study 205 -- 8.6 Conclusion 205 -- References 206 -- 9 Security for 5G Communications 207 -- 9.1 Introduction 207 -- 9.2 Overview of a Potential 5G Communications System Architecture 208 -- 9.3 Security Issues and Challenges in 5G Communications Systems 209 -- 9.3.1 User Equipment 210 -- 9.3.2 Access Networks 212 -- 9.3.3 Mobile Operator's Core Network 216 -- 9.3.4 External IP Networks 217 -- 9.4 Summary 218 -- References 219 -- 10 SON Evolution for 5G Mobile Networks 221 -- 10.1 Introduction 221 -- 10.2 SON in UMTS and LTE 222 -- 10.3 The Need for SON in 5G 231 -- 10.4 Evolution towards Small?]Cell Dominant HetNets 236 -- 10.4.1 Towards a New SON Architecture for 5G 237 -- 10.5 Conclusion 239 -- References 240 -- 11 Green Flexible RF for 5G 241 -- 11.1 Introduction 241 -- 11.2 Radio System Design 242 -- 11.2.1 Antenna Design for 5G 242 -- 11.2.2 Passive Front?]End Design Using SIW for 5G Application 254 -- 11.2.3 RF Power Amplifiers 257 -- 11.3 Nonlinear Crosstalk in MIMO Systems 264 -- 11.4 Summary 269 -- Acknowledgements 269 -- References 270 -- 12 Conclusion and Future Outlook 273 -- 12.1 Design Drivers for Next?]Generation Networks 273 -- 12.2 5G: A Green Inter?]networking Experience 274 -- 12.2.1 Emerging Approaches to Allow Drastic Reduction in the Signalling Overhead 278 -- 12.3 A Vision for 5G Mobile 278 -- 12.3.1 Mobile Small Cells the Way Forward? 279 -- 12.4 Final Remarks 282 -- References 282 -- Index 285.
Record Nr. UNINA-9910821857303321
Chichester, West Sussex, United Kingdom : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui