The dirac equation and its solutions / / Vladislav G. Bagrov, Dmitry Gitman |
Autore | Bagrov Vladislav G. |
Pubbl/distr/stampa | Berlin : , : De Gruyter, , [2014] |
Descrizione fisica | 1 online resource (444 p.) |
Disciplina | 530 |
Collana | De Gruyter studies in mathematical physics |
Soggetto topico |
Dirac equation
Quantum field theory Differential equations, Partial Wave equation |
Soggetto genere / forma | Electronic books. |
ISBN |
3-11-037775-6
3-11-026329-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Preface -- Acknowledgements -- Contents -- 1. Introduction -- 2. Relativistic equations of motion -- 3. Basic exact solutions -- 4. Particles in fields of special structure -- 5. Dirac-Pauli equation and its solutions -- 6. Propagators of relativistic particles -- 7. Electron interacting with a quantized electromagnetic plane wave -- 8. Spin equation and its solutions -- 9. One-dimensional Schrödinger equation and its solutions -- 10. Coherent states -- A. Appendix 1 -- B. Appendix 2 -- Bibliography -- Index -- Backmatter |
Record Nr. | UNINA-9910459726303321 |
Bagrov Vladislav G.
![]() |
||
Berlin : , : De Gruyter, , [2014] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
The dirac equation and its solutions / / Vladislav G. Bagrov, Dmitry Gitman |
Autore | Bagrov Vladislav G. |
Pubbl/distr/stampa | Berlin : , : De Gruyter, , [2014] |
Descrizione fisica | 1 online resource (444 p.) |
Disciplina | 530 |
Collana | De Gruyter studies in mathematical physics |
Soggetto topico |
Dirac equation
Quantum field theory Differential equations, Partial Wave equation |
Soggetto non controllato |
Dirac Equation
Quantum Electrodynamics Relativistic Quantum Mechanics |
ISBN |
3-11-037775-6
3-11-026329-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Preface -- Acknowledgements -- Contents -- 1. Introduction -- 2. Relativistic equations of motion -- 3. Basic exact solutions -- 4. Particles in fields of special structure -- 5. Dirac-Pauli equation and its solutions -- 6. Propagators of relativistic particles -- 7. Electron interacting with a quantized electromagnetic plane wave -- 8. Spin equation and its solutions -- 9. One-dimensional Schrödinger equation and its solutions -- 10. Coherent states -- A. Appendix 1 -- B. Appendix 2 -- Bibliography -- Index -- Backmatter |
Record Nr. | UNINA-9910787199703321 |
Bagrov Vladislav G.
![]() |
||
Berlin : , : De Gruyter, , [2014] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
The dirac equation and its solutions / / Vladislav G. Bagrov, Dmitry Gitman |
Autore | Bagrov Vladislav G. |
Pubbl/distr/stampa | Berlin : , : De Gruyter, , [2014] |
Descrizione fisica | 1 online resource (444 p.) |
Disciplina | 530 |
Collana | De Gruyter studies in mathematical physics |
Soggetto topico |
Dirac equation
Quantum field theory Differential equations, Partial Wave equation |
Soggetto non controllato |
Dirac Equation
Quantum Electrodynamics Relativistic Quantum Mechanics |
ISBN |
3-11-037775-6
3-11-026329-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Preface -- Acknowledgements -- Contents -- 1. Introduction -- 2. Relativistic equations of motion -- 3. Basic exact solutions -- 4. Particles in fields of special structure -- 5. Dirac-Pauli equation and its solutions -- 6. Propagators of relativistic particles -- 7. Electron interacting with a quantized electromagnetic plane wave -- 8. Spin equation and its solutions -- 9. One-dimensional Schrödinger equation and its solutions -- 10. Coherent states -- A. Appendix 1 -- B. Appendix 2 -- Bibliography -- Index -- Backmatter |
Record Nr. | UNINA-9910817026803321 |
Bagrov Vladislav G.
![]() |
||
Berlin : , : De Gruyter, , [2014] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Forward and inverse scattering algorithms based on contrast source integral equations / / Peter M. van den Berg |
Autore | Berg P. M. van den |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2021] |
Descrizione fisica | 1 online resource (547 pages) |
Disciplina | 530.124 |
Soggetto topico | Wave equation |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-74157-2
1-119-74156-4 1-119-74160-2 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Introduction -- About the Companion Website -- Part I Forward Scattering Problem -- Chapter 1 Scalar Waves -- 1.1 Three‐Dimensional Scattering by a Bounded Contrast -- 1.1.1 Radiation in an Unbounded Homogeneous Embedding -- 1.1.2 Scattering by a Bounded Contrast -- 1.1.3 Domain‐Integral Equation in the s‐Domain -- 1.1.4 The Born Approximation in the s‐Domain -- 1.1.5 Contrast‐Source Integral Equation -- 1.2 Two‐Dimensional and One‐Dimensional Scattering -- 1.3 Numerical Solution of the Integral Equations (1D, 2D, 3D) -- 1.4 Matlab Input and Output Functions -- 1.5 Matlab Code for Field Integral Equations (1D, 2D, 3D) -- 1.6 Matlab Code for Contrast‐Source Integral Equation -- 1.6.1 Performance Analysis -- 1.6.2 Matlab Built‐in Functions for Iterative Solution of the Contrast‐Source Integral Equation -- 1.7 Time‐Domain Solution of Contrast‐Source Integral Equation -- 1.A Representation for Homogeneous Green Functions -- 1.A.1 1D Green Function -- 1.A.2 2D Green Function -- 1.A.2.1 Cylindrical Polar Coordinates -- 1.A.3 3D Green Function -- 1.A.3.1 Spherical Polar Coordinates -- 1.B Scattering by a Simple Canonical Configuration -- 1.B.1 1D Scattering by a Slab -- 1.B.2 2D Scattering by a Circular Cylinder -- 1.B.3 3D Scattering by a Sphere -- 1.C Matlab Codes for Scattering by Canonical Objects -- 1.C.1 Matlab Code for Slab (1D) -- 1.C.2 Matlab Code for Circular Cylinder (2D) -- 1.C.3 Matlab Code for Sphere (3D) -- 1.C.4 Scattered‐Field Computations Canonical Objects -- Chapter 2 Acoustic Waves -- 2.1 Three‐Dimensional Scattering by a Bounded Contrast -- 2.1.1 Radiation in an Unbounded Homogeneous Embedding -- 2.1.2 Scattering by a Bounded Contrast -- 2.1.3 Contrast Source Domain Integral Equation -- 2.1.4 Numerical Solution and Operators Involved (1D, 2D, 3D).
2.1.4.1 Analytic Differentiation -- 2.1.4.2 Numerical Differentiation -- 2.1.4.3 Conjugate Gradient Method -- 2.1.4.4 Incident Acoustic Wave Field -- 2.1.4.5 Scattered Acoustic Wave Field -- 2.1.4.6 Weak Form of the Spatial Derivative of the Green Function -- 2.2 Matlab Codes Integral Equations: Pressure and Particle Velocity -- 2.3 Single Integral Equation in Terms of Contrast in Wave Speed and Gradient of Mass Density -- 2.3.1 Contrast Source Formulation -- 2.3.2 Conjugate Gradient Iterative Solution and Operators Involved -- 2.3.2.1 Analytic Differentiation -- 2.3.2.2 Numerical Differentiation -- 2.3.2.3 Scattered Acoustic Wave Field -- 2.4 Matlab Codes Integral Equations: Wave Speed and Gradient of Mass Density -- 2.4.1 Performance Analysis -- 2.5 Solution of Integral Equation: Interface Contrast Sources -- 2.5.1 Contrast‐Source Integral Equation -- 2.5.2 Numerical Solution of Interface Integral Equations (2D) -- 2.6 Numerical Solution Integral Equations: Volume and Interface Contrast Sources -- 2.6.1 Discrete Representations in 3D -- 2.6.2 Discrete Representations in 2D -- 2.6.3 Discrete Representations in 1D -- 2.6.4 Conjugate Gradient Iterative Solution and Operators Involved -- 2.6.4.1 Scattered Acoustic Wave Field -- 2.7 Matlab Codes Integral Equations: Volume and Interface Contrast Sources -- 2.7.1 Performance Analysis -- 2.7.2 Matlab BiCGSTAB Built‐in Functions for Iterative Solution of the Contrast Source Integral Equation -- 2.8 Time‐Domain Solution of Contrast Source Integral Equation -- 2.A Scattering by a Simple Canonical Configuration -- 2.A.1 1D Scattering by a Slab -- 2.A.2 2D Scattering by a Circular Cylinder -- 2.A.2.1 No Contrast in Wave Speed -- 2.A.3 3D Scattering by a Sphere -- 2.A.4 Scattered‐Field Computations Canonical Objects -- Chapter 3 Electromagnetic Waves -- 3.1 Three‐Dimensional Scattering by a Bounded Contrast. 3.1.1 Radiation in an Unbounded Homogeneous Embedding -- 3.1.2 3D Incident Electromagnetic Field -- 3.1.3 2D Incident Electromagnetic Field -- 3.1.4 Scattering by a Bounded Contrast -- 3.2 Contrast Source (E‐field) Integral Equations: Permittivity Contrast Only -- 3.2.1 2D Contrast Source (E‐field) Integral Equations: Permittivity Contrast Only -- 3.2.2 Conjugate Gradient Iterative Solution and Operators Involved -- 3.2.2.1 Conjugate Gradient Method -- 3.2.2.2 Scattered Electromagnetic Wave Field -- 3.2.3 Matlab Codes E‐field Integral Equations: Permittivity Contrast Only -- 3.2.3.1 Matlab BiCGSTAB Built‐in Function -- 3.3 E‐field Equation for Volume and Interface Contrast Sources: Permittivity Contrast Only -- 3.3.1 Numerical Solution with Volume and Interface Contrast Currents: Permittivity Contrast Only -- 3.3.1.1 Discrete Representations in 3D -- 3.3.1.2 Discrete Representations in 2D -- 3.3.2 Iterative Solution and Operators Involved -- 3.3.3 Matlab Codes E‐field Integral Equations: Volume and Interface Contrast Sources -- 3.3.4 Performance Analysis -- 3.4 Contrast Source Integral Equations for Both Permittivity and Permeability Contrast -- 3.4.1 Numerical Solution and Operators Involved -- 3.4.1.1 Scattered Electromagnetic Wave Field -- 3.4.2 Matlab Codes Integral Equations for Both Permittivity and Permeability Contrast: Special Case of Zero Wave‐Speed Contrast -- 3.5 E‐field Integral Equation for Zero Wave‐Speed Contrast -- 3.5.1 Numerical Solution for Interface Contrast Source Integral Equation: Zero Wave‐Speed Contrast -- 3.5.1.1 Discrete Representations in 3D -- 3.5.2 Matlab Codes Integral Equations for Zero Wave‐Speed Contrast -- 3.6 Time‐Domain Solution of Contrast Source Integral Equation -- 3.A Scattering by a Simple Canonical Configuration -- 3.A.1 2D Scattering by a Circular Cylinder. 3.A.1.1 TM Green Function of the Circular Cylinder -- 3.A.1.2 Electromagnetic Field Strengths -- 3.A.1.3 Matlab Codes for Circular Cylinder (2D) -- 3.A.2 3D Scattering by a Sphere -- 3.A.2.1 TM Green Function of the Sphere -- 3.A.2.2 Electromagnetic Field Strengths -- 3.A.2.3 Matlab Codes for Sphere (3D) -- 3.A.3 Scattered‐Field Computations Canonical Objects -- Part II Inverse Scattering Problem -- Chapter 4 Scalar Wave Inversion -- 4.1 Notation -- 4.2 Synthetic Data -- 4.3 Nonlinear Inverse Scattering Problem -- 4.4 Inverse Contrast Source Problem -- 4.5 Contrast Source Inversion -- 4.5.1 Discretization of Green's Operators and Norms -- 4.5.2 Updating the Contrast Sources -- 4.5.2.1 Gradient Directions -- 4.5.2.2 Calculation of the Step Length -- 4.5.3 Updating the Contrast -- 4.5.4 Initial Estimate -- 4.5.5 Matlab Codes for the CSI Method -- 4.6 Multiplicative Regularized Contrast Source Inversion -- 4.6.1 Regularization Function for the Contrast Update -- 4.6.2 Updating the Contrast with Multiplicative Regularization -- 4.6.3 Numerical Implementation of the Regularization -- 4.6.4 Numerical Solution of Regularization Equation -- 4.6.5 Matlab Codes for the MRCSI Method -- 4.7 CSI Method for Reconstruction of a Few Parameters -- 4.7.1 Gauss-Newton Method for the Contrast Update -- 4.7.2 Matlab Codes for the Gauss-Newton Type Contrast Updating -- 4.8 CSI Methods for Phaseless Data -- 4.8.1 CSI Method for Measured Intensity Data -- 4.8.2 CSI Method for Measured Amplitude Data -- 4.9 Gauss-Newton Inversion -- 4.9.1 Matlab Codes for Gauss-Newton Inversion -- Chapter 5 Acoustic Wave Inversion -- 5.1 Notation -- 5.1.1 Compressibility Contrast Only -- 5.1.2 Mass‐density Contrast Only -- 5.2 Synthetic Data for Zero Compressibility Contrast -- 5.3 Mass‐density Contrast Source Inversion -- 5.3.1 Updating the Contrast Sources -- 5.3.1.1 Gradient Directions. 5.3.1.2 Calculation of the Step Length -- 5.3.2 Updating the Contrast -- 5.3.3 Initial Estimate -- 5.3.4 Updating the Contrast with Multiplicative TV Regularization -- 5.3.5 Matlab Codes for the Acoustic MRCSI Method -- 5.4 Mass‐density Interface Model for Zero Wave‐Speed Contrast -- 5.4.1 Synthetic Data for Zero Wave‐speed Contrast -- 5.5 Mass‐density Interface Contrast Source Inversion -- 5.5.1 Updating the Interface‐contrast Sources -- 5.5.1.1 Gradient Directions -- 5.5.1.2 Calculation of the Step Length -- 5.5.2 Updating the Interface Contrast -- 5.5.3 Initial Estimate -- 5.5.4 Regularization by Resetting Small Interface‐contrast Variation to Zero -- 5.5.5 Matlab Codes for the MICSI Method -- 5.5.6 Kirchhoff Type of Approximations -- Chapter 6 Electromagnetic Wave Inversion -- 6.1 Notation -- 6.1.1 Permittivity Contrast Only -- 6.2 Synthetic Data for Zero Permeability Contrast -- 6.3 Data Modeled with Volume and Interface Contrast Sources -- 6.4 Electromagnetic Contrast Source Inversion -- 6.4.1 Updating the Contrast Sources -- 6.4.1.1 Gradient Directions -- 6.4.1.2 Calculation of the Step Length -- 6.4.2 Updating the Contrast -- 6.4.3 Initial Estimate -- 6.4.4 Updating the Contrast with Multiplicative TV Regularization -- 6.4.5 Matlab Codes for the MRCSI Method -- 6.5 Electromagnetic Gauss-Newton Inversion -- 6.5.1 Matlab Codes for Gauss-Newton Inversion -- 6.6 Electromagnetic Defects Metrology -- 6.6.1 Data with Phase Information -- 6.6.2 Phaseless Data -- 6.6.3 Focused Data -- Matlab Scripts -- References -- Biography -- Index -- EULA. |
Record Nr. | UNINA-9910555199403321 |
Berg P. M. van den
![]() |
||
Hoboken, New Jersey : , : Wiley, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Forward and inverse scattering algorithms based on contrast source integral equations / / Peter M. van den Berg |
Autore | Berg P. M. van den |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2021] |
Descrizione fisica | 1 online resource (547 pages) |
Disciplina | 530.124 |
Soggetto topico | Wave equation |
ISBN |
1-119-74157-2
1-119-74156-4 1-119-74160-2 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Introduction -- About the Companion Website -- Part I Forward Scattering Problem -- Chapter 1 Scalar Waves -- 1.1 Three‐Dimensional Scattering by a Bounded Contrast -- 1.1.1 Radiation in an Unbounded Homogeneous Embedding -- 1.1.2 Scattering by a Bounded Contrast -- 1.1.3 Domain‐Integral Equation in the s‐Domain -- 1.1.4 The Born Approximation in the s‐Domain -- 1.1.5 Contrast‐Source Integral Equation -- 1.2 Two‐Dimensional and One‐Dimensional Scattering -- 1.3 Numerical Solution of the Integral Equations (1D, 2D, 3D) -- 1.4 Matlab Input and Output Functions -- 1.5 Matlab Code for Field Integral Equations (1D, 2D, 3D) -- 1.6 Matlab Code for Contrast‐Source Integral Equation -- 1.6.1 Performance Analysis -- 1.6.2 Matlab Built‐in Functions for Iterative Solution of the Contrast‐Source Integral Equation -- 1.7 Time‐Domain Solution of Contrast‐Source Integral Equation -- 1.A Representation for Homogeneous Green Functions -- 1.A.1 1D Green Function -- 1.A.2 2D Green Function -- 1.A.2.1 Cylindrical Polar Coordinates -- 1.A.3 3D Green Function -- 1.A.3.1 Spherical Polar Coordinates -- 1.B Scattering by a Simple Canonical Configuration -- 1.B.1 1D Scattering by a Slab -- 1.B.2 2D Scattering by a Circular Cylinder -- 1.B.3 3D Scattering by a Sphere -- 1.C Matlab Codes for Scattering by Canonical Objects -- 1.C.1 Matlab Code for Slab (1D) -- 1.C.2 Matlab Code for Circular Cylinder (2D) -- 1.C.3 Matlab Code for Sphere (3D) -- 1.C.4 Scattered‐Field Computations Canonical Objects -- Chapter 2 Acoustic Waves -- 2.1 Three‐Dimensional Scattering by a Bounded Contrast -- 2.1.1 Radiation in an Unbounded Homogeneous Embedding -- 2.1.2 Scattering by a Bounded Contrast -- 2.1.3 Contrast Source Domain Integral Equation -- 2.1.4 Numerical Solution and Operators Involved (1D, 2D, 3D).
2.1.4.1 Analytic Differentiation -- 2.1.4.2 Numerical Differentiation -- 2.1.4.3 Conjugate Gradient Method -- 2.1.4.4 Incident Acoustic Wave Field -- 2.1.4.5 Scattered Acoustic Wave Field -- 2.1.4.6 Weak Form of the Spatial Derivative of the Green Function -- 2.2 Matlab Codes Integral Equations: Pressure and Particle Velocity -- 2.3 Single Integral Equation in Terms of Contrast in Wave Speed and Gradient of Mass Density -- 2.3.1 Contrast Source Formulation -- 2.3.2 Conjugate Gradient Iterative Solution and Operators Involved -- 2.3.2.1 Analytic Differentiation -- 2.3.2.2 Numerical Differentiation -- 2.3.2.3 Scattered Acoustic Wave Field -- 2.4 Matlab Codes Integral Equations: Wave Speed and Gradient of Mass Density -- 2.4.1 Performance Analysis -- 2.5 Solution of Integral Equation: Interface Contrast Sources -- 2.5.1 Contrast‐Source Integral Equation -- 2.5.2 Numerical Solution of Interface Integral Equations (2D) -- 2.6 Numerical Solution Integral Equations: Volume and Interface Contrast Sources -- 2.6.1 Discrete Representations in 3D -- 2.6.2 Discrete Representations in 2D -- 2.6.3 Discrete Representations in 1D -- 2.6.4 Conjugate Gradient Iterative Solution and Operators Involved -- 2.6.4.1 Scattered Acoustic Wave Field -- 2.7 Matlab Codes Integral Equations: Volume and Interface Contrast Sources -- 2.7.1 Performance Analysis -- 2.7.2 Matlab BiCGSTAB Built‐in Functions for Iterative Solution of the Contrast Source Integral Equation -- 2.8 Time‐Domain Solution of Contrast Source Integral Equation -- 2.A Scattering by a Simple Canonical Configuration -- 2.A.1 1D Scattering by a Slab -- 2.A.2 2D Scattering by a Circular Cylinder -- 2.A.2.1 No Contrast in Wave Speed -- 2.A.3 3D Scattering by a Sphere -- 2.A.4 Scattered‐Field Computations Canonical Objects -- Chapter 3 Electromagnetic Waves -- 3.1 Three‐Dimensional Scattering by a Bounded Contrast. 3.1.1 Radiation in an Unbounded Homogeneous Embedding -- 3.1.2 3D Incident Electromagnetic Field -- 3.1.3 2D Incident Electromagnetic Field -- 3.1.4 Scattering by a Bounded Contrast -- 3.2 Contrast Source (E‐field) Integral Equations: Permittivity Contrast Only -- 3.2.1 2D Contrast Source (E‐field) Integral Equations: Permittivity Contrast Only -- 3.2.2 Conjugate Gradient Iterative Solution and Operators Involved -- 3.2.2.1 Conjugate Gradient Method -- 3.2.2.2 Scattered Electromagnetic Wave Field -- 3.2.3 Matlab Codes E‐field Integral Equations: Permittivity Contrast Only -- 3.2.3.1 Matlab BiCGSTAB Built‐in Function -- 3.3 E‐field Equation for Volume and Interface Contrast Sources: Permittivity Contrast Only -- 3.3.1 Numerical Solution with Volume and Interface Contrast Currents: Permittivity Contrast Only -- 3.3.1.1 Discrete Representations in 3D -- 3.3.1.2 Discrete Representations in 2D -- 3.3.2 Iterative Solution and Operators Involved -- 3.3.3 Matlab Codes E‐field Integral Equations: Volume and Interface Contrast Sources -- 3.3.4 Performance Analysis -- 3.4 Contrast Source Integral Equations for Both Permittivity and Permeability Contrast -- 3.4.1 Numerical Solution and Operators Involved -- 3.4.1.1 Scattered Electromagnetic Wave Field -- 3.4.2 Matlab Codes Integral Equations for Both Permittivity and Permeability Contrast: Special Case of Zero Wave‐Speed Contrast -- 3.5 E‐field Integral Equation for Zero Wave‐Speed Contrast -- 3.5.1 Numerical Solution for Interface Contrast Source Integral Equation: Zero Wave‐Speed Contrast -- 3.5.1.1 Discrete Representations in 3D -- 3.5.2 Matlab Codes Integral Equations for Zero Wave‐Speed Contrast -- 3.6 Time‐Domain Solution of Contrast Source Integral Equation -- 3.A Scattering by a Simple Canonical Configuration -- 3.A.1 2D Scattering by a Circular Cylinder. 3.A.1.1 TM Green Function of the Circular Cylinder -- 3.A.1.2 Electromagnetic Field Strengths -- 3.A.1.3 Matlab Codes for Circular Cylinder (2D) -- 3.A.2 3D Scattering by a Sphere -- 3.A.2.1 TM Green Function of the Sphere -- 3.A.2.2 Electromagnetic Field Strengths -- 3.A.2.3 Matlab Codes for Sphere (3D) -- 3.A.3 Scattered‐Field Computations Canonical Objects -- Part II Inverse Scattering Problem -- Chapter 4 Scalar Wave Inversion -- 4.1 Notation -- 4.2 Synthetic Data -- 4.3 Nonlinear Inverse Scattering Problem -- 4.4 Inverse Contrast Source Problem -- 4.5 Contrast Source Inversion -- 4.5.1 Discretization of Green's Operators and Norms -- 4.5.2 Updating the Contrast Sources -- 4.5.2.1 Gradient Directions -- 4.5.2.2 Calculation of the Step Length -- 4.5.3 Updating the Contrast -- 4.5.4 Initial Estimate -- 4.5.5 Matlab Codes for the CSI Method -- 4.6 Multiplicative Regularized Contrast Source Inversion -- 4.6.1 Regularization Function for the Contrast Update -- 4.6.2 Updating the Contrast with Multiplicative Regularization -- 4.6.3 Numerical Implementation of the Regularization -- 4.6.4 Numerical Solution of Regularization Equation -- 4.6.5 Matlab Codes for the MRCSI Method -- 4.7 CSI Method for Reconstruction of a Few Parameters -- 4.7.1 Gauss-Newton Method for the Contrast Update -- 4.7.2 Matlab Codes for the Gauss-Newton Type Contrast Updating -- 4.8 CSI Methods for Phaseless Data -- 4.8.1 CSI Method for Measured Intensity Data -- 4.8.2 CSI Method for Measured Amplitude Data -- 4.9 Gauss-Newton Inversion -- 4.9.1 Matlab Codes for Gauss-Newton Inversion -- Chapter 5 Acoustic Wave Inversion -- 5.1 Notation -- 5.1.1 Compressibility Contrast Only -- 5.1.2 Mass‐density Contrast Only -- 5.2 Synthetic Data for Zero Compressibility Contrast -- 5.3 Mass‐density Contrast Source Inversion -- 5.3.1 Updating the Contrast Sources -- 5.3.1.1 Gradient Directions. 5.3.1.2 Calculation of the Step Length -- 5.3.2 Updating the Contrast -- 5.3.3 Initial Estimate -- 5.3.4 Updating the Contrast with Multiplicative TV Regularization -- 5.3.5 Matlab Codes for the Acoustic MRCSI Method -- 5.4 Mass‐density Interface Model for Zero Wave‐Speed Contrast -- 5.4.1 Synthetic Data for Zero Wave‐speed Contrast -- 5.5 Mass‐density Interface Contrast Source Inversion -- 5.5.1 Updating the Interface‐contrast Sources -- 5.5.1.1 Gradient Directions -- 5.5.1.2 Calculation of the Step Length -- 5.5.2 Updating the Interface Contrast -- 5.5.3 Initial Estimate -- 5.5.4 Regularization by Resetting Small Interface‐contrast Variation to Zero -- 5.5.5 Matlab Codes for the MICSI Method -- 5.5.6 Kirchhoff Type of Approximations -- Chapter 6 Electromagnetic Wave Inversion -- 6.1 Notation -- 6.1.1 Permittivity Contrast Only -- 6.2 Synthetic Data for Zero Permeability Contrast -- 6.3 Data Modeled with Volume and Interface Contrast Sources -- 6.4 Electromagnetic Contrast Source Inversion -- 6.4.1 Updating the Contrast Sources -- 6.4.1.1 Gradient Directions -- 6.4.1.2 Calculation of the Step Length -- 6.4.2 Updating the Contrast -- 6.4.3 Initial Estimate -- 6.4.4 Updating the Contrast with Multiplicative TV Regularization -- 6.4.5 Matlab Codes for the MRCSI Method -- 6.5 Electromagnetic Gauss-Newton Inversion -- 6.5.1 Matlab Codes for Gauss-Newton Inversion -- 6.6 Electromagnetic Defects Metrology -- 6.6.1 Data with Phase Information -- 6.6.2 Phaseless Data -- 6.6.3 Focused Data -- Matlab Scripts -- References -- Biography -- Index -- EULA. |
Record Nr. | UNINA-9910830875103321 |
Berg P. M. van den
![]() |
||
Hoboken, New Jersey : , : Wiley, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Geometric wave equations / Jalal Shatah, Michael Struwe |
Autore | Shatah, Jalal M. Ihsan |
Pubbl/distr/stampa | New York : Courant Institute of Mathematical Sciences ; Providence, Rhode Island : American Mathematical Society, c1998 |
Descrizione fisica | xi, 137 p. : ill. ; 26 cm. |
Disciplina | 530.124 |
Altri autori (Persone) | Struwe, Michaelauthor |
Collana | Courant lecture notes in mathematics, 1529-9031 ; 2 |
Soggetto topico |
Nonlinear waves
Wave equation |
ISBN | 0821827499 |
Classificazione |
AMS 35-01
AMS 35L70 LC QC174.26.W28S42 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991003683489707536 |
Shatah, Jalal M. Ihsan
![]() |
||
New York : Courant Institute of Mathematical Sciences ; Providence, Rhode Island : American Mathematical Society, c1998 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Global regularity for the Yang-Mills equations on high dimensional Minkowski space / / Joachim Krieger, Jacob Sterbenz |
Autore | Krieger Joachim <1976-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2012 |
Descrizione fisica | 1 online resource (99 p.) |
Disciplina | 515/.3535 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Generalized spaces
Wave equation Yang-Mills theory |
Soggetto genere / forma | Electronic books. |
ISBN | 0-8218-9871-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""1.1. A Description of the Problem""; ""1.2. Some Basic Notation""; ""Chapter 2. Some Gauge-Theoretic Preliminaries""; ""Chapter 3. Reduction to the “Main a-Priori Estimate�""; ""3.1. The Comparison Principle and Coulomb Form of the Equations""; ""3.2. Local Existence in the Coulomb Gauge""; ""3.3. The Main A-priori Estimate for the Curvature""; ""Chapter 4. Some Analytic Preliminaries""; ""4.1. Fourier Analytic Notation""; ""4.2. A Besov Calculus""; ""4.3. Microlocal Angular Decompositions""
""4.4. Additional Notational Conventions""""Chapter 5. Proof of the Main A-Priori Estimate""; ""5.1. Function Spaces""; ""5.2. Proof of the Critical A-Priori Estimate""; ""Chapter 6. Reduction to Approximate Half-Wave Operators""; ""6.1. A Further Reduction""; ""Chapter 7. Construction of the Half-Wave Operators""; ""7.1. Construction of the Gauges""; ""7.2. A Preliminary Estimate for the Modified Potentials""; ""7.3. The Div-Curl System for the Gauge Transformations""; ""7.4. The Differentiated Parametrix""; ""Chapter 8. Fixed Time ² Estimates for the Parametrix"" ""8.1. The “Smooth/Small� Decomposition of the * Kernel""""8.2. Bounds for the “Smooth� Portion of the Kernel""; ""8.3. Bounds for the “Small� Portion of the Kernel""; ""8.4. Proof of the Fixed-Time Accuracy Estimate""; ""Chapter 9. The Dispersive Estimate""; ""Chapter 10. Decomposable Function Spaces and Some Applications""; ""10.1. Decomposable Estimates for the Connection""; ""10.2. Proof of the Square Sum Strichartz Estimates""; ""10.3. Proof of the Differentiated Strichartz Estimates""; ""Chapter 11. Completion of the Proof""; ""Bibliography"" |
Record Nr. | UNINA-9910478903403321 |
Krieger Joachim <1976->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Global regularity for the Yang-Mills equations on high dimensional Minkowski space / / Joachim Krieger, Jacob Sterbenz |
Autore | Krieger Joachim <1976-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2012 |
Descrizione fisica | 1 online resource (99 p.) |
Disciplina | 515/.3535 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Generalized spaces
Wave equation Yang-Mills theory |
ISBN | 0-8218-9871-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""1.1. A Description of the Problem""; ""1.2. Some Basic Notation""; ""Chapter 2. Some Gauge-Theoretic Preliminaries""; ""Chapter 3. Reduction to the “Main a-Priori Estimate�""; ""3.1. The Comparison Principle and Coulomb Form of the Equations""; ""3.2. Local Existence in the Coulomb Gauge""; ""3.3. The Main A-priori Estimate for the Curvature""; ""Chapter 4. Some Analytic Preliminaries""; ""4.1. Fourier Analytic Notation""; ""4.2. A Besov Calculus""; ""4.3. Microlocal Angular Decompositions""
""4.4. Additional Notational Conventions""""Chapter 5. Proof of the Main A-Priori Estimate""; ""5.1. Function Spaces""; ""5.2. Proof of the Critical A-Priori Estimate""; ""Chapter 6. Reduction to Approximate Half-Wave Operators""; ""6.1. A Further Reduction""; ""Chapter 7. Construction of the Half-Wave Operators""; ""7.1. Construction of the Gauges""; ""7.2. A Preliminary Estimate for the Modified Potentials""; ""7.3. The Div-Curl System for the Gauge Transformations""; ""7.4. The Differentiated Parametrix""; ""Chapter 8. Fixed Time ² Estimates for the Parametrix"" ""8.1. The “Smooth/Small� Decomposition of the * Kernel""""8.2. Bounds for the “Smooth� Portion of the Kernel""; ""8.3. Bounds for the “Small� Portion of the Kernel""; ""8.4. Proof of the Fixed-Time Accuracy Estimate""; ""Chapter 9. The Dispersive Estimate""; ""Chapter 10. Decomposable Function Spaces and Some Applications""; ""10.1. Decomposable Estimates for the Connection""; ""10.2. Proof of the Square Sum Strichartz Estimates""; ""10.3. Proof of the Differentiated Strichartz Estimates""; ""Chapter 11. Completion of the Proof""; ""Bibliography"" |
Record Nr. | UNINA-9910796036703321 |
Krieger Joachim <1976->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Global regularity for the Yang-Mills equations on high dimensional Minkowski space / / Joachim Krieger, Jacob Sterbenz |
Autore | Krieger Joachim <1976-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2012 |
Descrizione fisica | 1 online resource (99 p.) |
Disciplina | 515/.3535 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Generalized spaces
Wave equation Yang-Mills theory |
ISBN | 0-8218-9871-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""1.1. A Description of the Problem""; ""1.2. Some Basic Notation""; ""Chapter 2. Some Gauge-Theoretic Preliminaries""; ""Chapter 3. Reduction to the “Main a-Priori Estimate�""; ""3.1. The Comparison Principle and Coulomb Form of the Equations""; ""3.2. Local Existence in the Coulomb Gauge""; ""3.3. The Main A-priori Estimate for the Curvature""; ""Chapter 4. Some Analytic Preliminaries""; ""4.1. Fourier Analytic Notation""; ""4.2. A Besov Calculus""; ""4.3. Microlocal Angular Decompositions""
""4.4. Additional Notational Conventions""""Chapter 5. Proof of the Main A-Priori Estimate""; ""5.1. Function Spaces""; ""5.2. Proof of the Critical A-Priori Estimate""; ""Chapter 6. Reduction to Approximate Half-Wave Operators""; ""6.1. A Further Reduction""; ""Chapter 7. Construction of the Half-Wave Operators""; ""7.1. Construction of the Gauges""; ""7.2. A Preliminary Estimate for the Modified Potentials""; ""7.3. The Div-Curl System for the Gauge Transformations""; ""7.4. The Differentiated Parametrix""; ""Chapter 8. Fixed Time ² Estimates for the Parametrix"" ""8.1. The “Smooth/Small� Decomposition of the * Kernel""""8.2. Bounds for the “Smooth� Portion of the Kernel""; ""8.3. Bounds for the “Small� Portion of the Kernel""; ""8.4. Proof of the Fixed-Time Accuracy Estimate""; ""Chapter 9. The Dispersive Estimate""; ""Chapter 10. Decomposable Function Spaces and Some Applications""; ""10.1. Decomposable Estimates for the Connection""; ""10.2. Proof of the Square Sum Strichartz Estimates""; ""10.3. Proof of the Differentiated Strichartz Estimates""; ""Chapter 11. Completion of the Proof""; ""Bibliography"" |
Record Nr. | UNINA-9910819075203321 |
Krieger Joachim <1976->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Hölder-Sobolev regularity of the solution to the stochastic wave equation in dimension three / / Robert C. Dalang, Marta Sanz-Solé |
Autore | Dalang Robert C. <1961-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
Descrizione fisica | 1 online resource (83 p.) |
Disciplina | 519.2 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Stochastic partial differential equations
Wave equation Random fields |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0537-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""Chapter 5. Sharpness of the Results""""Chapter 6. Integrated Increments of the Covariance Function""; ""6.1. Spatial Increments""; ""6.2. Increments in Time""; ""Bibliography"" |
Record Nr. | UNINA-9910481020303321 |
Dalang Robert C. <1961->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|