Dynamic behavior of vinyl chloride in aquatic ecosystems / / by James Hill IV [and four others] |
Autore | Hill James, IV |
Pubbl/distr/stampa | Athens, Georgia : , : Environmental Research Laboratory, U.S. Environmental Protection Agency, , 1976 |
Descrizione fisica | 1 online resource (ix, 64 pages) : illustrations |
Collana | Ecological research series |
Soggetto topico |
Water - Pollution - Mathematical models
Limnology - Mathematical models Vinyl chloride |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910706103903321 |
Hill James, IV | ||
Athens, Georgia : , : Environmental Research Laboratory, U.S. Environmental Protection Agency, , 1976 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Dynamics of environmental bioprocesses [[electronic resource] ] : modelling and simulation / / Jonathan B. Snape ... [et al.] |
Pubbl/distr/stampa | Weinheim ; ; New York, : VCH, c1995 |
Descrizione fisica | 1 online resource (524 p.) |
Disciplina |
628.168015118
628.5/01/5118 628.5015118 |
Altri autori (Persone) | SnapeJonathan B |
Soggetto topico |
Bioremediation - Mathematical models
Water - Pollution - Mathematical models Bioremediation - Computer simulation Water - Pollution - Computer simulation |
ISBN |
1-281-75864-7
9786611758646 3-527-61539-3 3-527-61538-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Dynamics of Environmental Bioprocesses; Preface; Organisation of the Book; ISIM Simulation Software; Acknowledgements; Table of Contents; Nomenclature for Chapters 1 and 2; 1 Modelling Principles; 1.1 The Role of Modelling in Environmental Technology; 1.2 General Aspects of the Modelling Approach; 1.3 Model Classification; 1.3.1 Deterministic Models; 1.3.2 Stochastic Models; 1.3.3 Steady-State Models; 1.3.4 Dynamic Models; 1.4 General Modelling Procedure; 1.5 Simulation Tools; 1.6 ISIM; 1.7 Introductory ISIM Example: WASTE; 1.8 Formulation of Dynamic Balance Equations
1.8.1 Mass Balance Procedures1.8.1.1 Case A . Continuous Stirred-Tank Reactor; 1.8.1.2 Case B . Tubular Reactor; 1.8.1.3 Case C . River with Eddy Current; 1.8.1.4 Rate of Accumulation Term; 1.8.1.5 Convective Flow Terms; 1.8.1.6 Production Rate; 1.8.1.7 Diffusion of Components; 1.8.1.8 Interphase Transport; 1.8.1.9 Case A . Waste Holding Tank: Total and Component Mass Balance Example; 1.8.1.10 Case B . The Plug-Flow Tubular Reactor; 1.8.1.11 Case C . Biological Hazard Room; 1.8.1.12 Case D . Lake Pollution Problem; 1.8.2 Energy Balancing 1.8.2.1 Case A . Determining Heat Transfer Area or Cooling Water Temperature1.8.2.2 Case B . Heating of a Filling Tank; 1.9 Chemical and Biological Reaction Systems; 1.9.1 Modes of Reactor Operation; 1.9.1.1 Batch Reactors; 1.9.1.2 Semi-Continuous or Fed-Batch Operation; 1.9.1.3 Continuous Operation; 1.9.2 Reaction Kinetics; 1.9.2.1 Chemical Kinetics; 1.9.2.2 Biological Reaction Kinetics; 1.9.2.3 Simple Microbial Growth Kinetics; 1.9.2.4 Substrate Uptake Kinetics; 1.9.2.5 Substrate Inhibition of Growth; 1.9.2.6 Additional Forms of Inhibition; 1.9.2.7 Other Expressions for Specific Growth Rate 1.9.2.8 Multiple-Substrate Kinetics1.9.2.9 Structured Kinetic Models; 1.9.2.10 Interacting Micro-Organisms; 1.10 Modelling of Bioreactor Systems; 1.10.1 Stirred Tank Reactors; 1.10.2 Modelling Tubular Plug-Flow Reactor Behaviour; 1.10.2.1 Steady-State Balancing; 1.10.2.2 Unsteady-State Balancing; 1.11 Mass Transfer Theory; 1.11.1 Phase Equilibria; 1.11.2 Interphase Mass Transfer; 1.11.2.1 Case A . Steady-State Tubular and Column Modelling; 1.11.3 Case Studies; 1.11.3.1 Case A . Aeration of a Tank of Water; 1.11.3.2 Case B . Biological Oxidation in an Aerated Tank 1.11.3.3 Case C . Determination of Biological Oxygen Uptake Rates by a Dynamic Method1.11.4 Gas-Liquid Phase Transfer Across a Free Surface; 1.12 Diffusion and Biological Reaction in Solid Phase Biosystems; 1.12.1 External Mass Transfer; 1.12.2 Finite Difference Model for Internal Transfer; 1.12.3 Case Studies for Diffusion with Biological Reaction; 1.12.3.1 Case A . Estimation of Oxygen Diffusion Effects in a Biofilm; 1.12.3.2 Case B . Biofilm Nitrification; 1.13 Process Control; 1.14 Optimisation. Parameter Estimation and Sensitivity Analysis 1.14.1 Case A . Estimation of Bioreaction Kinetic Parameters for Batch Degradation Using ESL and SIMUSOLV |
Record Nr. | UNINA-9910144330003321 |
Weinheim ; ; New York, : VCH, c1995 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Dynamics of environmental bioprocesses [[electronic resource] ] : modelling and simulation / / Jonathan B. Snape ... [et al.] |
Pubbl/distr/stampa | Weinheim ; ; New York, : VCH, c1995 |
Descrizione fisica | 1 online resource (524 p.) |
Disciplina |
628.168015118
628.5/01/5118 628.5015118 |
Altri autori (Persone) | SnapeJonathan B |
Soggetto topico |
Bioremediation - Mathematical models
Water - Pollution - Mathematical models Bioremediation - Computer simulation Water - Pollution - Computer simulation |
ISBN |
1-281-75864-7
9786611758646 3-527-61539-3 3-527-61538-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Dynamics of Environmental Bioprocesses; Preface; Organisation of the Book; ISIM Simulation Software; Acknowledgements; Table of Contents; Nomenclature for Chapters 1 and 2; 1 Modelling Principles; 1.1 The Role of Modelling in Environmental Technology; 1.2 General Aspects of the Modelling Approach; 1.3 Model Classification; 1.3.1 Deterministic Models; 1.3.2 Stochastic Models; 1.3.3 Steady-State Models; 1.3.4 Dynamic Models; 1.4 General Modelling Procedure; 1.5 Simulation Tools; 1.6 ISIM; 1.7 Introductory ISIM Example: WASTE; 1.8 Formulation of Dynamic Balance Equations
1.8.1 Mass Balance Procedures1.8.1.1 Case A . Continuous Stirred-Tank Reactor; 1.8.1.2 Case B . Tubular Reactor; 1.8.1.3 Case C . River with Eddy Current; 1.8.1.4 Rate of Accumulation Term; 1.8.1.5 Convective Flow Terms; 1.8.1.6 Production Rate; 1.8.1.7 Diffusion of Components; 1.8.1.8 Interphase Transport; 1.8.1.9 Case A . Waste Holding Tank: Total and Component Mass Balance Example; 1.8.1.10 Case B . The Plug-Flow Tubular Reactor; 1.8.1.11 Case C . Biological Hazard Room; 1.8.1.12 Case D . Lake Pollution Problem; 1.8.2 Energy Balancing 1.8.2.1 Case A . Determining Heat Transfer Area or Cooling Water Temperature1.8.2.2 Case B . Heating of a Filling Tank; 1.9 Chemical and Biological Reaction Systems; 1.9.1 Modes of Reactor Operation; 1.9.1.1 Batch Reactors; 1.9.1.2 Semi-Continuous or Fed-Batch Operation; 1.9.1.3 Continuous Operation; 1.9.2 Reaction Kinetics; 1.9.2.1 Chemical Kinetics; 1.9.2.2 Biological Reaction Kinetics; 1.9.2.3 Simple Microbial Growth Kinetics; 1.9.2.4 Substrate Uptake Kinetics; 1.9.2.5 Substrate Inhibition of Growth; 1.9.2.6 Additional Forms of Inhibition; 1.9.2.7 Other Expressions for Specific Growth Rate 1.9.2.8 Multiple-Substrate Kinetics1.9.2.9 Structured Kinetic Models; 1.9.2.10 Interacting Micro-Organisms; 1.10 Modelling of Bioreactor Systems; 1.10.1 Stirred Tank Reactors; 1.10.2 Modelling Tubular Plug-Flow Reactor Behaviour; 1.10.2.1 Steady-State Balancing; 1.10.2.2 Unsteady-State Balancing; 1.11 Mass Transfer Theory; 1.11.1 Phase Equilibria; 1.11.2 Interphase Mass Transfer; 1.11.2.1 Case A . Steady-State Tubular and Column Modelling; 1.11.3 Case Studies; 1.11.3.1 Case A . Aeration of a Tank of Water; 1.11.3.2 Case B . Biological Oxidation in an Aerated Tank 1.11.3.3 Case C . Determination of Biological Oxygen Uptake Rates by a Dynamic Method1.11.4 Gas-Liquid Phase Transfer Across a Free Surface; 1.12 Diffusion and Biological Reaction in Solid Phase Biosystems; 1.12.1 External Mass Transfer; 1.12.2 Finite Difference Model for Internal Transfer; 1.12.3 Case Studies for Diffusion with Biological Reaction; 1.12.3.1 Case A . Estimation of Oxygen Diffusion Effects in a Biofilm; 1.12.3.2 Case B . Biofilm Nitrification; 1.13 Process Control; 1.14 Optimisation. Parameter Estimation and Sensitivity Analysis 1.14.1 Case A . Estimation of Bioreaction Kinetic Parameters for Batch Degradation Using ESL and SIMUSOLV |
Record Nr. | UNISA-996212583503316 |
Weinheim ; ; New York, : VCH, c1995 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Dynamics of environmental bioprocesses [[electronic resource] ] : modelling and simulation / / Jonathan B. Snape ... [et al.] |
Pubbl/distr/stampa | Weinheim ; ; New York, : VCH, c1995 |
Descrizione fisica | 1 online resource (524 p.) |
Disciplina |
628.168015118
628.5/01/5118 628.5015118 |
Altri autori (Persone) | SnapeJonathan B |
Soggetto topico |
Bioremediation - Mathematical models
Water - Pollution - Mathematical models Bioremediation - Computer simulation Water - Pollution - Computer simulation |
ISBN |
1-281-75864-7
9786611758646 3-527-61539-3 3-527-61538-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Dynamics of Environmental Bioprocesses; Preface; Organisation of the Book; ISIM Simulation Software; Acknowledgements; Table of Contents; Nomenclature for Chapters 1 and 2; 1 Modelling Principles; 1.1 The Role of Modelling in Environmental Technology; 1.2 General Aspects of the Modelling Approach; 1.3 Model Classification; 1.3.1 Deterministic Models; 1.3.2 Stochastic Models; 1.3.3 Steady-State Models; 1.3.4 Dynamic Models; 1.4 General Modelling Procedure; 1.5 Simulation Tools; 1.6 ISIM; 1.7 Introductory ISIM Example: WASTE; 1.8 Formulation of Dynamic Balance Equations
1.8.1 Mass Balance Procedures1.8.1.1 Case A . Continuous Stirred-Tank Reactor; 1.8.1.2 Case B . Tubular Reactor; 1.8.1.3 Case C . River with Eddy Current; 1.8.1.4 Rate of Accumulation Term; 1.8.1.5 Convective Flow Terms; 1.8.1.6 Production Rate; 1.8.1.7 Diffusion of Components; 1.8.1.8 Interphase Transport; 1.8.1.9 Case A . Waste Holding Tank: Total and Component Mass Balance Example; 1.8.1.10 Case B . The Plug-Flow Tubular Reactor; 1.8.1.11 Case C . Biological Hazard Room; 1.8.1.12 Case D . Lake Pollution Problem; 1.8.2 Energy Balancing 1.8.2.1 Case A . Determining Heat Transfer Area or Cooling Water Temperature1.8.2.2 Case B . Heating of a Filling Tank; 1.9 Chemical and Biological Reaction Systems; 1.9.1 Modes of Reactor Operation; 1.9.1.1 Batch Reactors; 1.9.1.2 Semi-Continuous or Fed-Batch Operation; 1.9.1.3 Continuous Operation; 1.9.2 Reaction Kinetics; 1.9.2.1 Chemical Kinetics; 1.9.2.2 Biological Reaction Kinetics; 1.9.2.3 Simple Microbial Growth Kinetics; 1.9.2.4 Substrate Uptake Kinetics; 1.9.2.5 Substrate Inhibition of Growth; 1.9.2.6 Additional Forms of Inhibition; 1.9.2.7 Other Expressions for Specific Growth Rate 1.9.2.8 Multiple-Substrate Kinetics1.9.2.9 Structured Kinetic Models; 1.9.2.10 Interacting Micro-Organisms; 1.10 Modelling of Bioreactor Systems; 1.10.1 Stirred Tank Reactors; 1.10.2 Modelling Tubular Plug-Flow Reactor Behaviour; 1.10.2.1 Steady-State Balancing; 1.10.2.2 Unsteady-State Balancing; 1.11 Mass Transfer Theory; 1.11.1 Phase Equilibria; 1.11.2 Interphase Mass Transfer; 1.11.2.1 Case A . Steady-State Tubular and Column Modelling; 1.11.3 Case Studies; 1.11.3.1 Case A . Aeration of a Tank of Water; 1.11.3.2 Case B . Biological Oxidation in an Aerated Tank 1.11.3.3 Case C . Determination of Biological Oxygen Uptake Rates by a Dynamic Method1.11.4 Gas-Liquid Phase Transfer Across a Free Surface; 1.12 Diffusion and Biological Reaction in Solid Phase Biosystems; 1.12.1 External Mass Transfer; 1.12.2 Finite Difference Model for Internal Transfer; 1.12.3 Case Studies for Diffusion with Biological Reaction; 1.12.3.1 Case A . Estimation of Oxygen Diffusion Effects in a Biofilm; 1.12.3.2 Case B . Biofilm Nitrification; 1.13 Process Control; 1.14 Optimisation. Parameter Estimation and Sensitivity Analysis 1.14.1 Case A . Estimation of Bioreaction Kinetic Parameters for Batch Degradation Using ESL and SIMUSOLV |
Record Nr. | UNINA-9910830090403321 |
Weinheim ; ; New York, : VCH, c1995 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Dynamics of environmental bioprocesses : modelling and simulation / / Jonathan B. Snape ... [et al.] |
Pubbl/distr/stampa | Weinheim ; ; New York, : VCH, c1995 |
Descrizione fisica | 1 online resource (524 p.) |
Disciplina |
628.168015118
628.5/01/5118 628.5015118 |
Altri autori (Persone) | SnapeJonathan B |
Soggetto topico |
Bioremediation - Mathematical models
Water - Pollution - Mathematical models Bioremediation - Computer simulation Water - Pollution - Computer simulation |
ISBN |
1-281-75864-7
9786611758646 3-527-61539-3 3-527-61538-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Dynamics of Environmental Bioprocesses; Preface; Organisation of the Book; ISIM Simulation Software; Acknowledgements; Table of Contents; Nomenclature for Chapters 1 and 2; 1 Modelling Principles; 1.1 The Role of Modelling in Environmental Technology; 1.2 General Aspects of the Modelling Approach; 1.3 Model Classification; 1.3.1 Deterministic Models; 1.3.2 Stochastic Models; 1.3.3 Steady-State Models; 1.3.4 Dynamic Models; 1.4 General Modelling Procedure; 1.5 Simulation Tools; 1.6 ISIM; 1.7 Introductory ISIM Example: WASTE; 1.8 Formulation of Dynamic Balance Equations
1.8.1 Mass Balance Procedures1.8.1.1 Case A . Continuous Stirred-Tank Reactor; 1.8.1.2 Case B . Tubular Reactor; 1.8.1.3 Case C . River with Eddy Current; 1.8.1.4 Rate of Accumulation Term; 1.8.1.5 Convective Flow Terms; 1.8.1.6 Production Rate; 1.8.1.7 Diffusion of Components; 1.8.1.8 Interphase Transport; 1.8.1.9 Case A . Waste Holding Tank: Total and Component Mass Balance Example; 1.8.1.10 Case B . The Plug-Flow Tubular Reactor; 1.8.1.11 Case C . Biological Hazard Room; 1.8.1.12 Case D . Lake Pollution Problem; 1.8.2 Energy Balancing 1.8.2.1 Case A . Determining Heat Transfer Area or Cooling Water Temperature1.8.2.2 Case B . Heating of a Filling Tank; 1.9 Chemical and Biological Reaction Systems; 1.9.1 Modes of Reactor Operation; 1.9.1.1 Batch Reactors; 1.9.1.2 Semi-Continuous or Fed-Batch Operation; 1.9.1.3 Continuous Operation; 1.9.2 Reaction Kinetics; 1.9.2.1 Chemical Kinetics; 1.9.2.2 Biological Reaction Kinetics; 1.9.2.3 Simple Microbial Growth Kinetics; 1.9.2.4 Substrate Uptake Kinetics; 1.9.2.5 Substrate Inhibition of Growth; 1.9.2.6 Additional Forms of Inhibition; 1.9.2.7 Other Expressions for Specific Growth Rate 1.9.2.8 Multiple-Substrate Kinetics1.9.2.9 Structured Kinetic Models; 1.9.2.10 Interacting Micro-Organisms; 1.10 Modelling of Bioreactor Systems; 1.10.1 Stirred Tank Reactors; 1.10.2 Modelling Tubular Plug-Flow Reactor Behaviour; 1.10.2.1 Steady-State Balancing; 1.10.2.2 Unsteady-State Balancing; 1.11 Mass Transfer Theory; 1.11.1 Phase Equilibria; 1.11.2 Interphase Mass Transfer; 1.11.2.1 Case A . Steady-State Tubular and Column Modelling; 1.11.3 Case Studies; 1.11.3.1 Case A . Aeration of a Tank of Water; 1.11.3.2 Case B . Biological Oxidation in an Aerated Tank 1.11.3.3 Case C . Determination of Biological Oxygen Uptake Rates by a Dynamic Method1.11.4 Gas-Liquid Phase Transfer Across a Free Surface; 1.12 Diffusion and Biological Reaction in Solid Phase Biosystems; 1.12.1 External Mass Transfer; 1.12.2 Finite Difference Model for Internal Transfer; 1.12.3 Case Studies for Diffusion with Biological Reaction; 1.12.3.1 Case A . Estimation of Oxygen Diffusion Effects in a Biofilm; 1.12.3.2 Case B . Biofilm Nitrification; 1.13 Process Control; 1.14 Optimisation. Parameter Estimation and Sensitivity Analysis 1.14.1 Case A . Estimation of Bioreaction Kinetic Parameters for Batch Degradation Using ESL and SIMUSOLV |
Record Nr. | UNINA-9910877156403321 |
Weinheim ; ; New York, : VCH, c1995 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Evaluation of future base-flow water-quality conditions in the Hillsborough River, Florida / / by Mario Fernandez, Jr., Carole L. Goetz, and Jeffery E. Miller |
Autore | Fernandez Mario |
Pubbl/distr/stampa | Tallahassee, Florida : , : U.S. Geological Survey, , 1984 |
Descrizione fisica | 1 online resource (iv, 47 pages) : illustrations, maps |
Collana | Water-resources investigations report |
Soggetto topico |
Water quality - Florida - Mathematical models
Water - Pollution - Florida - Mathematical models Water - Pollution - Mathematical models Water quality - Mathematical models |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910713384703321 |
Fernandez Mario | ||
Tallahassee, Florida : , : U.S. Geological Survey, , 1984 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Potential effects of anticipated coal mining on salinity of the Price, San Rafael, and Green rivers, Utah / / by K.L. Lindskov |
Autore | Lindskov K. L. |
Pubbl/distr/stampa | Salt Lake City, Utah : , : U.S. Geological Survey, , 1986 |
Descrizione fisica | 1 online resource (vi, 35 pages) : illustrations, maps |
Collana | Water-resources investigations report |
Soggetto topico |
Coal mines and mining - Environmental aspects - Utah
Stream salinity - Utah Saline waters - Utah Water - Pollution - Utah - Mathematical models Streamflow - Utah - Mathematical models Coal mines and mining - Environmental aspects Saline waters Streamflow - Mathematical models Water - Pollution - Mathematical models |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910713459403321 |
Lindskov K. L. | ||
Salt Lake City, Utah : , : U.S. Geological Survey, , 1986 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|