Application of a hydrochemical model and a multivariate soil-solution mixing model to alpine watersheds in the Sierra Nevada, California / / by Richard P. Hooper and Norman E. Peters ; prepared in cooperation with the California Air Resources Board
| Application of a hydrochemical model and a multivariate soil-solution mixing model to alpine watersheds in the Sierra Nevada, California / / by Richard P. Hooper and Norman E. Peters ; prepared in cooperation with the California Air Resources Board |
| Autore | Hooper Richard P (Richard Paul), <1957-> |
| Pubbl/distr/stampa | Atlanta, Georgia : , : U.S. Geological Survey, , 1993 |
| Descrizione fisica | 1 online resource (vi, 58 pages) : illustrations, maps |
| Collana | Water-resources investigations report |
| Soggetto topico |
Mountain watersheds - Sierra Nevada (Calif. and Nev.) - Computer simulation
Acid deposition - Sierra Nevada (Calif. and Nev.) - Computer simulation Water - Pollution - Sierra Nevada (Calif. and Nev.) - Computer simulation Water - Pollution - Computer simulation |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910715923703321 |
Hooper Richard P (Richard Paul), <1957->
|
||
| Atlanta, Georgia : , : U.S. Geological Survey, , 1993 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Aquatox (release 3.1) : modeling environmental fate and ecological effects in aquatic ecosystems / / Jonathan S. Clough
| Aquatox (release 3.1) : modeling environmental fate and ecological effects in aquatic ecosystems / / Jonathan S. Clough |
| Autore | Clough Jonathan S. |
| Pubbl/distr/stampa | Washington, DC : , : U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, , 2012 |
| Descrizione fisica | 1 online resource (2 volumes) : color illustrations |
| Soggetto topico |
Aquatic ecology - United States - Computer simulation
Water - Pollution - United States - Computer simulation Water quality management - United States - Computer simulation Aquatic ecology - Computer simulation Water - Pollution - Computer simulation Water quality management - Computer simulation |
| Soggetto genere / forma | Handbooks and manuals. |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | v.1. User's manuals -- v.2. Technical documentation. |
| Altri titoli varianti | Aquatox |
| Record Nr. | UNINA-9910716731603321 |
Clough Jonathan S.
|
||
| Washington, DC : , : U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, , 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Dynamics of environmental bioprocesses [[electronic resource] ] : modelling and simulation / / Jonathan B. Snape ... [et al.]
| Dynamics of environmental bioprocesses [[electronic resource] ] : modelling and simulation / / Jonathan B. Snape ... [et al.] |
| Pubbl/distr/stampa | Weinheim ; ; New York, : VCH, c1995 |
| Descrizione fisica | 1 online resource (524 p.) |
| Disciplina |
628.168015118
628.5/01/5118 628.5015118 |
| Altri autori (Persone) | SnapeJonathan B |
| Soggetto topico |
Bioremediation - Mathematical models
Water - Pollution - Mathematical models Bioremediation - Computer simulation Water - Pollution - Computer simulation |
| ISBN |
1-281-75864-7
9786611758646 3-527-61539-3 3-527-61538-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Dynamics of Environmental Bioprocesses; Preface; Organisation of the Book; ISIM Simulation Software; Acknowledgements; Table of Contents; Nomenclature for Chapters 1 and 2; 1 Modelling Principles; 1.1 The Role of Modelling in Environmental Technology; 1.2 General Aspects of the Modelling Approach; 1.3 Model Classification; 1.3.1 Deterministic Models; 1.3.2 Stochastic Models; 1.3.3 Steady-State Models; 1.3.4 Dynamic Models; 1.4 General Modelling Procedure; 1.5 Simulation Tools; 1.6 ISIM; 1.7 Introductory ISIM Example: WASTE; 1.8 Formulation of Dynamic Balance Equations
1.8.1 Mass Balance Procedures1.8.1.1 Case A . Continuous Stirred-Tank Reactor; 1.8.1.2 Case B . Tubular Reactor; 1.8.1.3 Case C . River with Eddy Current; 1.8.1.4 Rate of Accumulation Term; 1.8.1.5 Convective Flow Terms; 1.8.1.6 Production Rate; 1.8.1.7 Diffusion of Components; 1.8.1.8 Interphase Transport; 1.8.1.9 Case A . Waste Holding Tank: Total and Component Mass Balance Example; 1.8.1.10 Case B . The Plug-Flow Tubular Reactor; 1.8.1.11 Case C . Biological Hazard Room; 1.8.1.12 Case D . Lake Pollution Problem; 1.8.2 Energy Balancing 1.8.2.1 Case A . Determining Heat Transfer Area or Cooling Water Temperature1.8.2.2 Case B . Heating of a Filling Tank; 1.9 Chemical and Biological Reaction Systems; 1.9.1 Modes of Reactor Operation; 1.9.1.1 Batch Reactors; 1.9.1.2 Semi-Continuous or Fed-Batch Operation; 1.9.1.3 Continuous Operation; 1.9.2 Reaction Kinetics; 1.9.2.1 Chemical Kinetics; 1.9.2.2 Biological Reaction Kinetics; 1.9.2.3 Simple Microbial Growth Kinetics; 1.9.2.4 Substrate Uptake Kinetics; 1.9.2.5 Substrate Inhibition of Growth; 1.9.2.6 Additional Forms of Inhibition; 1.9.2.7 Other Expressions for Specific Growth Rate 1.9.2.8 Multiple-Substrate Kinetics1.9.2.9 Structured Kinetic Models; 1.9.2.10 Interacting Micro-Organisms; 1.10 Modelling of Bioreactor Systems; 1.10.1 Stirred Tank Reactors; 1.10.2 Modelling Tubular Plug-Flow Reactor Behaviour; 1.10.2.1 Steady-State Balancing; 1.10.2.2 Unsteady-State Balancing; 1.11 Mass Transfer Theory; 1.11.1 Phase Equilibria; 1.11.2 Interphase Mass Transfer; 1.11.2.1 Case A . Steady-State Tubular and Column Modelling; 1.11.3 Case Studies; 1.11.3.1 Case A . Aeration of a Tank of Water; 1.11.3.2 Case B . Biological Oxidation in an Aerated Tank 1.11.3.3 Case C . Determination of Biological Oxygen Uptake Rates by a Dynamic Method1.11.4 Gas-Liquid Phase Transfer Across a Free Surface; 1.12 Diffusion and Biological Reaction in Solid Phase Biosystems; 1.12.1 External Mass Transfer; 1.12.2 Finite Difference Model for Internal Transfer; 1.12.3 Case Studies for Diffusion with Biological Reaction; 1.12.3.1 Case A . Estimation of Oxygen Diffusion Effects in a Biofilm; 1.12.3.2 Case B . Biofilm Nitrification; 1.13 Process Control; 1.14 Optimisation. Parameter Estimation and Sensitivity Analysis 1.14.1 Case A . Estimation of Bioreaction Kinetic Parameters for Batch Degradation Using ESL and SIMUSOLV |
| Record Nr. | UNINA-9910144330003321 |
| Weinheim ; ; New York, : VCH, c1995 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Dynamics of environmental bioprocesses [[electronic resource] ] : modelling and simulation / / Jonathan B. Snape ... [et al.]
| Dynamics of environmental bioprocesses [[electronic resource] ] : modelling and simulation / / Jonathan B. Snape ... [et al.] |
| Pubbl/distr/stampa | Weinheim ; ; New York, : VCH, c1995 |
| Descrizione fisica | 1 online resource (524 p.) |
| Disciplina |
628.168015118
628.5/01/5118 628.5015118 |
| Altri autori (Persone) | SnapeJonathan B |
| Soggetto topico |
Bioremediation - Mathematical models
Water - Pollution - Mathematical models Bioremediation - Computer simulation Water - Pollution - Computer simulation |
| ISBN |
1-281-75864-7
9786611758646 3-527-61539-3 3-527-61538-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Dynamics of Environmental Bioprocesses; Preface; Organisation of the Book; ISIM Simulation Software; Acknowledgements; Table of Contents; Nomenclature for Chapters 1 and 2; 1 Modelling Principles; 1.1 The Role of Modelling in Environmental Technology; 1.2 General Aspects of the Modelling Approach; 1.3 Model Classification; 1.3.1 Deterministic Models; 1.3.2 Stochastic Models; 1.3.3 Steady-State Models; 1.3.4 Dynamic Models; 1.4 General Modelling Procedure; 1.5 Simulation Tools; 1.6 ISIM; 1.7 Introductory ISIM Example: WASTE; 1.8 Formulation of Dynamic Balance Equations
1.8.1 Mass Balance Procedures1.8.1.1 Case A . Continuous Stirred-Tank Reactor; 1.8.1.2 Case B . Tubular Reactor; 1.8.1.3 Case C . River with Eddy Current; 1.8.1.4 Rate of Accumulation Term; 1.8.1.5 Convective Flow Terms; 1.8.1.6 Production Rate; 1.8.1.7 Diffusion of Components; 1.8.1.8 Interphase Transport; 1.8.1.9 Case A . Waste Holding Tank: Total and Component Mass Balance Example; 1.8.1.10 Case B . The Plug-Flow Tubular Reactor; 1.8.1.11 Case C . Biological Hazard Room; 1.8.1.12 Case D . Lake Pollution Problem; 1.8.2 Energy Balancing 1.8.2.1 Case A . Determining Heat Transfer Area or Cooling Water Temperature1.8.2.2 Case B . Heating of a Filling Tank; 1.9 Chemical and Biological Reaction Systems; 1.9.1 Modes of Reactor Operation; 1.9.1.1 Batch Reactors; 1.9.1.2 Semi-Continuous or Fed-Batch Operation; 1.9.1.3 Continuous Operation; 1.9.2 Reaction Kinetics; 1.9.2.1 Chemical Kinetics; 1.9.2.2 Biological Reaction Kinetics; 1.9.2.3 Simple Microbial Growth Kinetics; 1.9.2.4 Substrate Uptake Kinetics; 1.9.2.5 Substrate Inhibition of Growth; 1.9.2.6 Additional Forms of Inhibition; 1.9.2.7 Other Expressions for Specific Growth Rate 1.9.2.8 Multiple-Substrate Kinetics1.9.2.9 Structured Kinetic Models; 1.9.2.10 Interacting Micro-Organisms; 1.10 Modelling of Bioreactor Systems; 1.10.1 Stirred Tank Reactors; 1.10.2 Modelling Tubular Plug-Flow Reactor Behaviour; 1.10.2.1 Steady-State Balancing; 1.10.2.2 Unsteady-State Balancing; 1.11 Mass Transfer Theory; 1.11.1 Phase Equilibria; 1.11.2 Interphase Mass Transfer; 1.11.2.1 Case A . Steady-State Tubular and Column Modelling; 1.11.3 Case Studies; 1.11.3.1 Case A . Aeration of a Tank of Water; 1.11.3.2 Case B . Biological Oxidation in an Aerated Tank 1.11.3.3 Case C . Determination of Biological Oxygen Uptake Rates by a Dynamic Method1.11.4 Gas-Liquid Phase Transfer Across a Free Surface; 1.12 Diffusion and Biological Reaction in Solid Phase Biosystems; 1.12.1 External Mass Transfer; 1.12.2 Finite Difference Model for Internal Transfer; 1.12.3 Case Studies for Diffusion with Biological Reaction; 1.12.3.1 Case A . Estimation of Oxygen Diffusion Effects in a Biofilm; 1.12.3.2 Case B . Biofilm Nitrification; 1.13 Process Control; 1.14 Optimisation. Parameter Estimation and Sensitivity Analysis 1.14.1 Case A . Estimation of Bioreaction Kinetic Parameters for Batch Degradation Using ESL and SIMUSOLV |
| Record Nr. | UNISA-996212583503316 |
| Weinheim ; ; New York, : VCH, c1995 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Dynamics of environmental bioprocesses [[electronic resource] ] : modelling and simulation / / Jonathan B. Snape ... [et al.]
| Dynamics of environmental bioprocesses [[electronic resource] ] : modelling and simulation / / Jonathan B. Snape ... [et al.] |
| Pubbl/distr/stampa | Weinheim ; ; New York, : VCH, c1995 |
| Descrizione fisica | 1 online resource (524 p.) |
| Disciplina |
628.168015118
628.5/01/5118 628.5015118 |
| Altri autori (Persone) | SnapeJonathan B |
| Soggetto topico |
Bioremediation - Mathematical models
Water - Pollution - Mathematical models Bioremediation - Computer simulation Water - Pollution - Computer simulation |
| ISBN |
1-281-75864-7
9786611758646 3-527-61539-3 3-527-61538-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Dynamics of Environmental Bioprocesses; Preface; Organisation of the Book; ISIM Simulation Software; Acknowledgements; Table of Contents; Nomenclature for Chapters 1 and 2; 1 Modelling Principles; 1.1 The Role of Modelling in Environmental Technology; 1.2 General Aspects of the Modelling Approach; 1.3 Model Classification; 1.3.1 Deterministic Models; 1.3.2 Stochastic Models; 1.3.3 Steady-State Models; 1.3.4 Dynamic Models; 1.4 General Modelling Procedure; 1.5 Simulation Tools; 1.6 ISIM; 1.7 Introductory ISIM Example: WASTE; 1.8 Formulation of Dynamic Balance Equations
1.8.1 Mass Balance Procedures1.8.1.1 Case A . Continuous Stirred-Tank Reactor; 1.8.1.2 Case B . Tubular Reactor; 1.8.1.3 Case C . River with Eddy Current; 1.8.1.4 Rate of Accumulation Term; 1.8.1.5 Convective Flow Terms; 1.8.1.6 Production Rate; 1.8.1.7 Diffusion of Components; 1.8.1.8 Interphase Transport; 1.8.1.9 Case A . Waste Holding Tank: Total and Component Mass Balance Example; 1.8.1.10 Case B . The Plug-Flow Tubular Reactor; 1.8.1.11 Case C . Biological Hazard Room; 1.8.1.12 Case D . Lake Pollution Problem; 1.8.2 Energy Balancing 1.8.2.1 Case A . Determining Heat Transfer Area or Cooling Water Temperature1.8.2.2 Case B . Heating of a Filling Tank; 1.9 Chemical and Biological Reaction Systems; 1.9.1 Modes of Reactor Operation; 1.9.1.1 Batch Reactors; 1.9.1.2 Semi-Continuous or Fed-Batch Operation; 1.9.1.3 Continuous Operation; 1.9.2 Reaction Kinetics; 1.9.2.1 Chemical Kinetics; 1.9.2.2 Biological Reaction Kinetics; 1.9.2.3 Simple Microbial Growth Kinetics; 1.9.2.4 Substrate Uptake Kinetics; 1.9.2.5 Substrate Inhibition of Growth; 1.9.2.6 Additional Forms of Inhibition; 1.9.2.7 Other Expressions for Specific Growth Rate 1.9.2.8 Multiple-Substrate Kinetics1.9.2.9 Structured Kinetic Models; 1.9.2.10 Interacting Micro-Organisms; 1.10 Modelling of Bioreactor Systems; 1.10.1 Stirred Tank Reactors; 1.10.2 Modelling Tubular Plug-Flow Reactor Behaviour; 1.10.2.1 Steady-State Balancing; 1.10.2.2 Unsteady-State Balancing; 1.11 Mass Transfer Theory; 1.11.1 Phase Equilibria; 1.11.2 Interphase Mass Transfer; 1.11.2.1 Case A . Steady-State Tubular and Column Modelling; 1.11.3 Case Studies; 1.11.3.1 Case A . Aeration of a Tank of Water; 1.11.3.2 Case B . Biological Oxidation in an Aerated Tank 1.11.3.3 Case C . Determination of Biological Oxygen Uptake Rates by a Dynamic Method1.11.4 Gas-Liquid Phase Transfer Across a Free Surface; 1.12 Diffusion and Biological Reaction in Solid Phase Biosystems; 1.12.1 External Mass Transfer; 1.12.2 Finite Difference Model for Internal Transfer; 1.12.3 Case Studies for Diffusion with Biological Reaction; 1.12.3.1 Case A . Estimation of Oxygen Diffusion Effects in a Biofilm; 1.12.3.2 Case B . Biofilm Nitrification; 1.13 Process Control; 1.14 Optimisation. Parameter Estimation and Sensitivity Analysis 1.14.1 Case A . Estimation of Bioreaction Kinetic Parameters for Batch Degradation Using ESL and SIMUSOLV |
| Record Nr. | UNINA-9910830090403321 |
| Weinheim ; ; New York, : VCH, c1995 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Dynamics of environmental bioprocesses : modelling and simulation / / Jonathan B. Snape ... [et al.]
| Dynamics of environmental bioprocesses : modelling and simulation / / Jonathan B. Snape ... [et al.] |
| Pubbl/distr/stampa | Weinheim ; ; New York, : VCH, c1995 |
| Descrizione fisica | 1 online resource (524 p.) |
| Disciplina |
628.168015118
628.5/01/5118 628.5015118 |
| Altri autori (Persone) | SnapeJonathan B |
| Soggetto topico |
Bioremediation - Mathematical models
Water - Pollution - Mathematical models Bioremediation - Computer simulation Water - Pollution - Computer simulation |
| ISBN |
9786611758646
9781281758644 1281758647 9783527615391 3527615393 9783527615384 3527615385 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Dynamics of Environmental Bioprocesses; Preface; Organisation of the Book; ISIM Simulation Software; Acknowledgements; Table of Contents; Nomenclature for Chapters 1 and 2; 1 Modelling Principles; 1.1 The Role of Modelling in Environmental Technology; 1.2 General Aspects of the Modelling Approach; 1.3 Model Classification; 1.3.1 Deterministic Models; 1.3.2 Stochastic Models; 1.3.3 Steady-State Models; 1.3.4 Dynamic Models; 1.4 General Modelling Procedure; 1.5 Simulation Tools; 1.6 ISIM; 1.7 Introductory ISIM Example: WASTE; 1.8 Formulation of Dynamic Balance Equations
1.8.1 Mass Balance Procedures1.8.1.1 Case A . Continuous Stirred-Tank Reactor; 1.8.1.2 Case B . Tubular Reactor; 1.8.1.3 Case C . River with Eddy Current; 1.8.1.4 Rate of Accumulation Term; 1.8.1.5 Convective Flow Terms; 1.8.1.6 Production Rate; 1.8.1.7 Diffusion of Components; 1.8.1.8 Interphase Transport; 1.8.1.9 Case A . Waste Holding Tank: Total and Component Mass Balance Example; 1.8.1.10 Case B . The Plug-Flow Tubular Reactor; 1.8.1.11 Case C . Biological Hazard Room; 1.8.1.12 Case D . Lake Pollution Problem; 1.8.2 Energy Balancing 1.8.2.1 Case A . Determining Heat Transfer Area or Cooling Water Temperature1.8.2.2 Case B . Heating of a Filling Tank; 1.9 Chemical and Biological Reaction Systems; 1.9.1 Modes of Reactor Operation; 1.9.1.1 Batch Reactors; 1.9.1.2 Semi-Continuous or Fed-Batch Operation; 1.9.1.3 Continuous Operation; 1.9.2 Reaction Kinetics; 1.9.2.1 Chemical Kinetics; 1.9.2.2 Biological Reaction Kinetics; 1.9.2.3 Simple Microbial Growth Kinetics; 1.9.2.4 Substrate Uptake Kinetics; 1.9.2.5 Substrate Inhibition of Growth; 1.9.2.6 Additional Forms of Inhibition; 1.9.2.7 Other Expressions for Specific Growth Rate 1.9.2.8 Multiple-Substrate Kinetics1.9.2.9 Structured Kinetic Models; 1.9.2.10 Interacting Micro-Organisms; 1.10 Modelling of Bioreactor Systems; 1.10.1 Stirred Tank Reactors; 1.10.2 Modelling Tubular Plug-Flow Reactor Behaviour; 1.10.2.1 Steady-State Balancing; 1.10.2.2 Unsteady-State Balancing; 1.11 Mass Transfer Theory; 1.11.1 Phase Equilibria; 1.11.2 Interphase Mass Transfer; 1.11.2.1 Case A . Steady-State Tubular and Column Modelling; 1.11.3 Case Studies; 1.11.3.1 Case A . Aeration of a Tank of Water; 1.11.3.2 Case B . Biological Oxidation in an Aerated Tank 1.11.3.3 Case C . Determination of Biological Oxygen Uptake Rates by a Dynamic Method1.11.4 Gas-Liquid Phase Transfer Across a Free Surface; 1.12 Diffusion and Biological Reaction in Solid Phase Biosystems; 1.12.1 External Mass Transfer; 1.12.2 Finite Difference Model for Internal Transfer; 1.12.3 Case Studies for Diffusion with Biological Reaction; 1.12.3.1 Case A . Estimation of Oxygen Diffusion Effects in a Biofilm; 1.12.3.2 Case B . Biofilm Nitrification; 1.13 Process Control; 1.14 Optimisation. Parameter Estimation and Sensitivity Analysis 1.14.1 Case A . Estimation of Bioreaction Kinetic Parameters for Batch Degradation Using ESL and SIMUSOLV |
| Record Nr. | UNINA-9911019297903321 |
| Weinheim ; ; New York, : VCH, c1995 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||