Advances in precision nutrition, personalization and health aging / / Alexander G. Haslberger |
Autore | Haslberger Alexander G. |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (302 pages) |
Disciplina | 612.67 |
Soggetto topico |
Aging - Nutritional aspects
Older people - Nutrition Nutrició Vellesa Persones grans |
Soggetto genere / forma | Llibres electrònics |
ISBN |
9783031101533
9783031101526 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- Reference -- Contents -- 1 Trends in Personalised Precision Nutrition, Objectives -- 1.1 The Rise of Molecular Nutrition -- 1.2 The Way to Personalisation -- 1.3 Consequences of Personalisation -- References -- 2 Individualization, Precision Nutrition Developments for the 21st Century -- 2.1 Introduction -- 2.2 Evolution of Nutrition Science in the 20th Century Toward Personalization -- 2.2.1 Nutrition in the Post-genomic Era -- 2.2.2 New Horizons in Personalized Nutrition -- 2.3 Individualization and Food Choices Based on Personalized/Precision Nutrition and Involvement of Diet in Chronic Diseases -- 2.4 Translating Personalized Nutrition for Society -- 2.4.1 Social Impact Regarding PN -- 2.4.2 PN-Associated Business and Value Creation Models -- 2.4.3 Social Concerns and Their Impact on PN Development -- 2.4.4 Consumer Attitudes Toward Personalized Nutrition -- 2.5 Future Outlook -- 2.6 Concluding Remarks -- 2.7 Financial Support -- References -- 3 Precision Nutrition from the View of Genetics and Epigenetics -- 3.1 Introduction -- 3.2 Nutrigenetics and Nutrigenomics -- 3.3 Epigenetic Mechanisms -- 3.4 The DOHaD Theory: The Importance of the Maternal Diet in Animal and Human Models -- 3.5 Epigenetic Mechanisms and Nutrients -- 3.6 Epigenetic Mechanisms of Antioxidants -- 3.7 Aging, Epigenetics, Nutrition -- 3.8 The Importance of the Gender in Precision Nutrition Medicine -- 3.9 Concluding Remarks -- References -- 4 Precision Nutrition from the View of the Gut Microbiome -- 4.1 Introduction -- 4.2 The Human Gut Microbiome-(Un)limited Possibilities for Improving Human Health -- 4.3 Exploring the Human Gut Microbiome: Start Low Go Slow-Advances in Microbiome Research -- 4.3.1 Eubiosis versus Dysbiosis -- 4.4 The Microbiome Study in PN Research-Important Aspects (see Figs. 4.3 and 4.4, Box 2).
4.4.1 Setting Standards in the Microbiome Field -- 4.4.2 Visualizing Methods in Microbiome Research -- 4.5 From the Clinical Trial to the Personal Recommendation: Putting the Individual Pieces of the Puzzle Together -- 4.6 Conclusion -- References -- 5 Personalized Nutrition for Healthy Aging, A Review -- 5.1 Healthy Aging -- 5.1.1 Genetics and Healthy Aging -- 5.1.2 Epigenetics and Healthy Aging -- 5.1.3 Histones and Healthy Aging -- 5.1.4 Noncoding RNAs (NcRNAs) and Aging -- 5.1.5 Aging of the Immune System (I.S.) and Epigenetics -- 5.1.6 Neurodegenerative Diseases, Aging, and Epigenetics -- 5.1.7 Microbiota and Healthy Aging -- 5.1.8 Individual-Specific Aging -- 5.2 Ways to Personalization -- 5.2.1 Missing Heritability -- 5.2.2 Markers Enable a Personalized Pre- and Intervention -- 5.3 Developments of Precision Medicine -- 5.4 Development of Personalized Precision Nutrition -- 5.4.1 Personalized Nutrition and Nutriepigenetics -- 5.4.2 Personalized Nutrition and Gene Expression -- 5.4.3 Personalized Nutrition and Microbiota-Epigenetic Interactions -- 5.5 Omics Approaches and Data Integration -- 5.5.1 Translation of Personalized Precision Nutrition into Praxis -- 5.5.2 Personalization or Stratification, Metabotypes -- 5.5.3 Personalized Precision Nutrition and Consumer Aspects -- 5.5.4 Consumer Supporting Organizations in Between Multiple Interests, Discussion -- References -- 6 Precise Nutrition and Metabolic Syndrome, Remodeling the Microbiome with Polyphenols, Probiotics, and Postbiotics -- 6.1 Introduction -- 6.2 Metabolic Syndrome-Definition, Prevalence, and Pathophysiology -- 6.3 The Microbiome-Composition, Establishment, and Functions -- 6.4 Role of Microbiome in Development of Metabolic Syndrome -- 6.5 Precision Nutrition-Gut Microbiota as a Target for Metabolic Syndrome Treatment -- 6.5.1 Probiotics -- 6.5.2 Postbiotics -- 6.5.3 Polyphenols. 6.6 Conclusion -- Literatures -- 7 Precision Nutrition and Metabolomics, a Model of Alzheimer's Disease -- 7.1 Introduction -- 7.2 Metabolomics and the -Omics Cascade -- 7.3 How Metabolomics Provides Actionable Insights into Disease Pathophysiology -- 7.4 Western-Style Diet, Metabolism, and the Epidemiology of Chronic Disease -- 7.5 Western-Style Diet, the Association with Intracellular Malnutrition, and Nutritional Interventions in Alzheimer's Disease -- 7.6 A Metabolic Model of Alzheimer's Disease, and Its Relationship with Nutritional and Microbiome-Related Factors -- 7.6.1 Lipid Metabolism -- 7.6.2 Glucose Homeostasis and Alterations in Energy Supply -- 7.6.3 Bile Acid Metabolism -- 7.6.4 The Metabolic Model of Alzheimer's Disease (AD) -- 7.7 Conclusion -- References -- 8 Precision Nutrition and Cognitive Decline -- 8.1 Introduction -- 8.2 Nutrients and Dietary Patterns -- 8.2.1 Antioxidants -- 8.2.2 Vitamins -- 8.2.3 Omega-3 Fatty Acids -- 8.2.4 Dietary Patterns -- 8.3 Individualized Response to Diet -- 8.3.1 Human Genome -- 8.3.2 Epigenome -- 8.3.3 Microbiome -- 8.4 Risk Factors for Dementia -- 8.5 Challenges and Future Directions -- References -- 9 Algorithms for and Challenges in the Analysis of Markers in Personalized Health Care -- 9.1 Introduction -- 9.2 Supervised Learning -- 9.2.1 Basic Definitions and the Learning Task -- 9.2.2 Loss Functions -- 9.2.3 Errors -- 9.2.4 Model Selection, Model Assessment, and Datasets -- 9.2.5 Learnability and Data -- 9.2.6 Bias and Variance -- 9.3 Algorithms -- 9.3.1 KNN -- 9.3.2 Linear Regression -- 9.3.3 Logistic Regression -- 9.3.4 Artificial Neural Networks -- 9.3.5 Naive Bayes Classifiers -- 9.3.6 Decision Trees and Random Forests -- 9.4 The Challenges -- 9.4.1 Overfitting -- 9.4.2 (Epi-)genetic Problems -- 9.4.3 A Numerical Example -- 9.5 Quality Metrics. 9.5.1 True and False Positives and Negatives -- 9.5.2 Positive and Negative Rates -- 9.5.3 Predictive Values Etc. -- 9.5.4 Prevalence, Accuracy, and Informedness -- 9.5.5 Weighted Informedness or Weighted Youden's Index -- 9.5.6 Confusion Matrix -- 9.5.7 A Numerical Example -- 9.6 Probably Approximately Correct -- 9.7 Conclusions -- 10 Precise Nutrition and Functional Foods -- 10.1 Novel Food, Food Supplements, Nutraceuticals, Phytoceuticals, Medicinal Foods -- 10.2 Fasting, Caloric Restriction (CR) -- 10.3 Modulating the Diet-Gut Microbiome Interplay -- 10.4 Probiotics -- 10.5 Prebiotics -- 10.6 Nutraceuticals -- 10.7 Medical Foods -- 10.8 Mechanistic Aspects of Special Foods -- 10.8.1 Epigenetic Active Foods -- 10.8.2 Sirtuin Activation by "Sirtfoods" -- 10.9 Senolytic Foods -- 10.9.1 Fasting Mimetics -- 10.10 Personalization, Discussion -- References -- 11 Precision Nutrition from a Practical Clinical View, Case Study -- 11.1 Introduction -- 11.2 Chances of Diagnostics and Markers -- 11.3 Case Study -- 11.4 Conclusion -- 12 Translational Aspects in Precision Nutrition, Personalization, Biomarkers and Healthy Aging -- 12.1 Boom in Medical Self-tests-Since Corona Pandemic -- 12.2 From One Fits-All Recommendations to Personalized Tests -- 12.3 Nutrigenetics -- 12.4 Impact of Genetic Lifestyle Tests -- 12.5 Compliance of Lifestyle Change -- 12.6 Nutrigeneomics -- 12.7 Personalized Epigenetic Testing -- 12.8 Personalized Microbiota Analysis -- 12.9 Legal Responsibility -- 12.10 Validation of Study Results and Generation of Limit Values -- 12.11 Conclusion -- Appendix -- References. |
Record Nr. | UNINA-9910629286503321 |
Haslberger Alexander G. | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Aging mechanisms II : longevity, metabolism, and brain aging / / Nozomu Mori, editor |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (429 pages) |
Disciplina | 612.67 |
Soggetto topico |
Aging - Physiological aspects
Longevity Longevitat Vellesa Fisiologia humana |
Soggetto genere / forma | Llibres electrònics |
ISBN |
981-16-7976-2
981-16-7977-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Contributors -- Part I: From Hypothesis to Mechanisms -- Chapter 1: An Unsolved Problem in Gerontology Yet: Molecular Mechanisms of Biological Aging-A Historical and Critical Overview -- 1.1 Introduction -- 1.2 The Definition of Aging -- 1.3 Aging Theories -- 1.4 Mutation Theory of Aging/Genome Instability Theory of Aging -- 1.5 Free Radical Theory of Aging/Oxidative Stress Theory of Aging -- 1.6 The Mitochondrial Theory of Aging -- 1.7 The Error Catastrophe Theory of Aging -- 1.8 The Altered Protein Theory of Aging/Protein Homeostasis or Proteostasis Theory of Aging -- 1.9 Dysdifferentiation Theory of Aging/Epigenetic Theory of Aging -- 1.10 The Hyperfunction Theory of Aging -- 1.11 Summary and Perspectives -- References -- Part II: Human Longevity: Accelerated Aging and Centenarians -- Chapter 2: Clinical and Basic Biology of Werner Syndrome, the Model Disease of Human Aging -- 2.1 Clinical Features and Pathogenesis of Werner Syndrome -- 2.1.1 Introduction -- 2.1.2 Diagnostic Criteria -- 2.1.3 Werner Syndrome Registry -- 2.1.3.1 General Information -- Age at Onset and Diagnosis -- Physique -- Life Expectancy -- Laboratory Test -- 2.1.3.2 Symptoms -- Sarcopenia -- Diabetes -- Dyslipidemia -- Fatty Liver -- Atherosclerosis -- Malignancy -- Osteoporosis -- Skin Ulcers -- Infection -- Calcification in Tendons -- 2.2 Basic Research and Molecular Mechanisms of Werner Syndrome -- 2.2.1 Werner Gene and Protein -- 2.2.2 WRN and DNA Damage Repair -- 2.2.3 WRN and Telomeres -- 2.2.4 WRN and Mitochondria, mTOR, and Autophagy -- 2.2.5 Phenotype of WRN KO Mice -- 2.2.6 WRN and Stem Cell Senescence and Epigenome Regulation -- 2.2.7 WS Patient-Derived iPS Cells -- 2.2.8 Malignancy and WRN -- 2.3 Conclusion -- References -- Chapter 3: Biomarkers of Healthy Longevity: Lessons from Supercentenarians in Japan -- 3.1 Introduction.
3.2 Demography and Functional Status of Supercentenarians -- 3.3 Cardiovascular Biomarkers and Exceptional Survival -- 3.4 Adiponectin -- 3.5 Immunological Biomarkers of Healthy Longevity -- 3.6 Future Prospects -- References -- Part III: Cellular Aging and Lower Animal Models -- Chapter 4: Cellular Aging and Metabolites in Aging -- 4.1 Introduction -- 4.2 Historical Theory and Replicative Senescence -- 4.3 Telomere-Dependent and Telomere-Independent Senescence -- 4.4 Double-Edged Sword of SIS -- 4.5 Senescence Markers -- 4.6 The Aging Hypothesis Relevant to Metabolic Profiles -- 4.7 Metabolomic Approach for Human Whole Blood -- 4.8 Blood Metabolites for Aging Markers -- 4.9 Blood Metabolites for Fasting Markers -- 4.10 Frailty Markers for Antioxidation, Cognition, and Mobility -- 4.11 Summary -- References -- Chapter 5: To G0 or Not to G0: Cell Cycle Paradox in Senescence and Brain Aging -- 5.1 Alzheimer´s Disease -- 5.2 Cellular Senescence -- 5.3 Cellular Senescence in Post-mitotic Cells -- 5.4 Proteostasis Failure as a Driver of Neuronal Senescence -- 5.5 Neuronal Senescence: Pleiotropic Response -- 5.6 Conclusion -- References -- Chapter 6: C. elegans Longevity Genes -- 6.1 Caenorhabditis elegans -- 6.2 Methodology -- 6.3 Aging Phenotype -- 6.4 Longevity Genes -- References -- Chapter 7: Understanding the Functions of Longevity Genes in Drosophila -- 7.1 Drosophila melanogaster as a Model System to Study Aging -- 7.1.1 Antioxidant -- 7.1.1.1 Cytoplasmic SOD (Sod1) -- 7.1.1.2 Mitochondrial SOD (Sod2) -- 7.1.1.3 Extracellular SOD (Sod3) -- 7.1.1.4 Catalase (Cat) -- 7.1.1.5 Thioredoxin (Trx-2, TrxT, dhd) -- 7.1.2 Insulin/IGF-1TOR Pathway -- 7.1.3 JNK Signaling Pathway -- 7.1.4 Epigenetic Mechanism -- 7.2 Epigenetic Inheritance of Longevity -- References -- Part IV: Metabolism: Factors Affecting Tissue Aging -- Chapter 8: NAD+ Metabolism in Aging. 8.1 Introduction -- 8.2 NAD+ Biosynthesis -- 8.3 NAD+ Consumption -- 8.4 NAD+ Levels Decline with Age -- 8.5 Effects of Age-Related NAD+ Decline on Hallmarks of Aging -- 8.6 Role of NAD+ in Age-Associated Functional Decline of Organs -- 8.6.1 Liver -- 8.6.2 Adipose Tissue -- 8.6.3 Skeletal Muscle -- 8.6.4 Kidney -- 8.7 NAD+ Precursors for Restoring NAD+ Levels in Animals and Humans -- 8.8 Conclusions -- References -- Chapter 9: Mitochondrial Dysfunction and Growth Differentiation Factor 15 in Aging -- 9.1 Introduction -- 9.2 GDF15 as a Marker for Mitochondrial Dysfunction and Mitochondrial Diseases -- 9.2.1 Cybrid Cells with Pathogenic mtDNA Mutations -- 9.2.2 Energy Metabolism in Cybrid Cells with Mitochondrial Dysfunction -- 9.2.3 Transcriptional Response to Impaired Energy Metabolism in Cybrid Cells -- 9.2.4 GDF15 as a Marker for Mitochondrial Dysfunction -- 9.2.5 GDF15 as a Biomarker for Mitochondrial Diseases -- 9.3 GDF15 and Aging -- 9.3.1 Characteristics of GDF15 -- 9.3.2 GDF15 Functions Through Its Specific Receptor GFRAL -- 9.3.3 Correlation of Circulating GDF15 Levels with Age -- 9.3.4 GDF15 and Adverse Outcomes in Older Adults -- 9.3.5 GDF15 and Age-Related Diseases -- 9.4 Discussion and Perspectives -- References -- Chapter 10: Sirtuins and Metabolic Health -- 10.1 Introduction -- 10.2 Sirtuins in Oxidative Stress and Mitochondrial Biogenesis (Fig. 10.1) -- 10.3 Sirtuins in Inflammation (Fig. 10.1) -- 10.4 Sirtuins in Autophagy (Fig. 10.1) -- 10.5 Sirtuins in Apoptosis (Fig. 10.1) -- 10.6 Interventions Targeting Sirtuins -- 10.7 Perspectives -- References -- Chapter 11: Autophagy in Aging and Longevity -- 11.1 Overview of Autophagy -- 11.2 Activation of Autophagy Is One of the Convergent Mechanisms of Animal Longevity -- 11.3 Autophagic Activity Declines with Age -- 11.4 Autophagy and Age-Related Neurodegenerative Diseases. 11.5 Molecular Mechanism Regulating Autophagy and Longevity -- 11.6 Intervention of Aging via Modulating Autophagy -- 11.7 Conclusion -- References -- Chapter 12: Sarcopenia: Current Topics and Future Perspective -- 12.1 What Is Sarcopenia? -- 12.2 How to Diagnose Sarcopenia -- 12.3 AWGS 2019 -- 12.4 Utilization of Phase Angle -- 12.5 Prevalence of Sarcopenia -- 12.6 Etiology of Sarcopenia -- 12.7 Genetics of Sarcopenia -- 12.8 Prognosis of Sarcopenia -- 12.9 Relationship Between Sarcopenia and Disease -- 12.10 Macroscopic Features of Age-Related Changes in Skeletal Muscle -- 12.11 Microscopic Features of Age-Related Changes in Skeletal Muscle -- 12.12 Prevention of Sarcopenia -- 12.13 Interventions for Sarcopenia -- 12.14 How to Provide Resistance Training -- 12.15 How to Provide Amino Acids and Protein for Persons with Sarcopenia -- 12.16 Pharmacological Treatment of Sarcopenia -- 12.17 Conclusions -- References -- Chapter 13: Osteoporosis and Cellular Senescence in Bone -- 13.1 Introduction -- 13.2 Role of Bone Cells and Age-Related Changes -- 13.3 Cellular Senescence in the Bone Microenvironment -- 13.4 Bone Phenotype in Animal Models of Accelerated Senescence -- 13.4.1 DNA Damage -- 13.4.2 Telomere Shortening -- 13.5 Cellular Senescence in Bone -- 13.6 Elimination of Senescent Cells in Bone Using Transgenic Mice -- 13.7 Senolytic and Senomorphic Approaches to Treating Osteoporosis -- 13.8 Summary -- References -- Chapter 14: Aging and Chronic Kidney Disease Viewed from the FGF-Klotho Endocrine System -- 14.1 Discovery of the Klotho Gene -- 14.2 Klotho Protein Function -- 14.3 Discovery of the FGF-Klotho Endocrine Axes -- 14.4 Phosphate and CKD -- 14.5 Phosphate Accelerates Aging -- 14.6 Calciprotein Particles (CPPs) -- 14.7 CPPs and Lipoproteins -- 14.8 Secreted αKlotho -- 14.9 FGF21-βKlotho Endocrine System -- 14.10 FGF21 and CKD. 14.11 Concluding Remarks -- References -- Chapter 15: Aging Biomarker SMP30 into a New Phase of Vitamin C and Aging Research -- 15.1 Introduction -- 15.2 Discovery of Age-Associated Protein SMP30 -- 15.3 Functional Analysis of SMP30 -- 15.4 SMP30 as an Organophosphatase -- 15.5 SMP30 Homolog in Fireflies -- 15.6 SMP30 Deficiency -- 15.7 SMP30 Is a Gluconolactonase (GNL) -- 15.8 SMP30-Knockout Mice Are Unable to Synthesize Vitamin C -- 15.9 Vitamin C Deficiency Accelerates Aging -- 15.10 Rough Estimation of Vitamin C Level That Accelerates Human Aging -- 15.11 Currently Available Findings Using SMP30-Knockout Mice -- 15.12 Perspectives of Vitamin C and Aging Research Using SMP30-Knockout Mice -- References -- Part V: Aging Brain: Cognitive Decline, Synaptic Plasticity -- Chapter 16: Age-Related Memory Impairments Are Caused by Alterations in Glial Activity at Old Ages -- 16.1 Associative Memory in Drosophila and the Effects of Aging on Memory -- 16.2 Age-Related Impairments in MTM -- 16.3 Age-Related Impairments in LTM -- 16.4 Defects in Neuron-Glia Interactions in Mammalian Models -- References -- Chapter 17: Critical Roles of Glial Neuroinflammation in Age-Related Memory Decline -- 17.1 Introduction -- 17.2 Age-Related Cognitive Decline in Animal Models -- 17.2.1 Cognitive Declines in Animal Model for Vascular Dementia -- 17.2.2 Memory Declines in Mouse Model for Alzheimer´s Disease -- 17.3 Critical Roles of Neuroinflammation in Age-Related Cognitive declines -- 17.3.1 Glial Neuroinflammation -- 17.3.2 Neuroinflammation at the Cerebrovascular Unit -- 17.4 Age-Related Cognitive Decline in Elderly Individuals -- 17.5 Conclusion -- References -- Chapter 18: Central Mechanisms Linking Age-Associated Physiological Changes to Health Span Through the Hypothalamus -- 18.1 Introduction. 18.2 Molecules and Signaling Pathways in the Hypothalamus that Control Mammalian Longevity. |
Record Nr. | UNINA-9910743231703321 |
Singapore : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|