Intelligent resource management in vehicular networks / / Haixia Peng, Qiang Ye, and Xuemin Shen |
Autore | Peng Haixia |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (163 pages) |
Disciplina | 388.312 |
Collana | Wireless Networks |
Soggetto topico |
Vehicular ad hoc networks (Computer networks) - Safety measures
Vehicular ad hoc networks (Computer networks) |
ISBN | 3-030-96507-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Acronyms -- 1 Introduction -- 1.1 Overview of Vehicular Networks -- 1.1.1 Vehicular Network Applications -- 1.1.2 Vehicular Network Characteristics -- 1.1.3 Vehicular Network Classifications -- 1.1.4 Overview of Vehicular Communication Technologies -- 1.2 Challenges in Vehicular Networks -- 1.2.1 Vehicular Information Sharing -- 1.2.2 Task Computing -- 1.3 Resource Management in Vehicular Networks -- 1.3.1 Spectrum Resource Management -- 1.3.2 Computing Resource Management -- 1.3.3 Intelligent Multi-Resource Management -- 1.3.3.1 Methodology -- 1.4 Aim of the Monograph -- 1.5 Summary -- References -- 2 MEC-Assisted Vehicular Networking -- 2.1 MEC-Assisted ADVNET Architecture -- 2.1.1 Problem Statement -- 2.1.2 Architecture Design -- 2.2 SDN-Enabled Resource Management -- 2.2.1 Computing and Storage Resource Management -- 2.2.2 Spectrum Management -- 2.2.3 Open Research Issues -- 2.3 Aerial-Assisted Vehicular Network: Case Study -- 2.3.1 A Drone-Assisted MVNET Architecture -- 2.3.2 Intelligent Resource Management -- 2.3.3 Case Study -- 2.4 Summary -- References -- 3 Spectrum Slicing in MEC-Assisted ADVNETs -- 3.1 System Model -- 3.1.1 Dynamic Slicing Framework -- 3.1.2 Communication Model -- 3.2 Resource Management Scheme -- 3.2.1 Network-Level Spectrum Reservation -- 3.2.2 Vehicle-Level Spectrum Reservation -- 3.2.3 Transmit Power Control -- 3.3 Problem Analysis and Suboptimal Solution -- 3.3.1 Problem Analysis -- 3.3.2 Algorithm Design -- 3.4 Simulation Results -- 3.5 Summary -- References -- 4 Intelligent Multi-Dimensional Resource Allocation in MVNETs -- 4.1 System Model -- 4.1.1 Spectrum, Computing, and Caching Allocation -- 4.2 Problem Formulation and Transformation -- 4.2.1 Problem Formulation -- 4.2.2 Problem Transformation with DRL -- 4.3 DDPG Algorithm Based Solution -- 4.3.1 DDPG-Based Algorithm.
4.3.2 HDDPG-Based Algorithm -- 4.4 Simulation Results and Analysis -- 4.5 Summary -- References -- 5 Aerial-Assisted Intelligent Resource Allocation -- 5.1 System Model and Problem Formulation -- 5.1.1 UAV-Assisted MVNET -- 5.1.2 Resource Reservation Models -- 5.1.3 Problem Formulation -- 5.2 Centralized/Distributed Multi-Dimensional ResourceManagement -- 5.2.1 Problem Transformation -- 5.2.2 SADDPG/MADDPG-Based Solutions -- 5.3 Simulation Results -- 5.3.1 Performance Evaluation for the SADDPG-Based Scheme -- 5.3.2 Performance Evaluation for the MADDPG-BasedScheme -- 5.4 Summary -- References -- 6 Conclusions and Future Research Directions -- 6.1 Conclusions -- 6.2 Future Research Directions -- References -- Index. |
Record Nr. | UNISA-996464537403316 |
Peng Haixia | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Intelligent resource management in vehicular networks / / Haixia Peng, Qiang Ye, and Xuemin Shen |
Autore | Peng Haixia |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (163 pages) |
Disciplina | 388.312 |
Collana | Wireless Networks |
Soggetto topico |
Vehicular ad hoc networks (Computer networks) - Safety measures
Vehicular ad hoc networks (Computer networks) |
ISBN | 3-030-96507-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Acronyms -- 1 Introduction -- 1.1 Overview of Vehicular Networks -- 1.1.1 Vehicular Network Applications -- 1.1.2 Vehicular Network Characteristics -- 1.1.3 Vehicular Network Classifications -- 1.1.4 Overview of Vehicular Communication Technologies -- 1.2 Challenges in Vehicular Networks -- 1.2.1 Vehicular Information Sharing -- 1.2.2 Task Computing -- 1.3 Resource Management in Vehicular Networks -- 1.3.1 Spectrum Resource Management -- 1.3.2 Computing Resource Management -- 1.3.3 Intelligent Multi-Resource Management -- 1.3.3.1 Methodology -- 1.4 Aim of the Monograph -- 1.5 Summary -- References -- 2 MEC-Assisted Vehicular Networking -- 2.1 MEC-Assisted ADVNET Architecture -- 2.1.1 Problem Statement -- 2.1.2 Architecture Design -- 2.2 SDN-Enabled Resource Management -- 2.2.1 Computing and Storage Resource Management -- 2.2.2 Spectrum Management -- 2.2.3 Open Research Issues -- 2.3 Aerial-Assisted Vehicular Network: Case Study -- 2.3.1 A Drone-Assisted MVNET Architecture -- 2.3.2 Intelligent Resource Management -- 2.3.3 Case Study -- 2.4 Summary -- References -- 3 Spectrum Slicing in MEC-Assisted ADVNETs -- 3.1 System Model -- 3.1.1 Dynamic Slicing Framework -- 3.1.2 Communication Model -- 3.2 Resource Management Scheme -- 3.2.1 Network-Level Spectrum Reservation -- 3.2.2 Vehicle-Level Spectrum Reservation -- 3.2.3 Transmit Power Control -- 3.3 Problem Analysis and Suboptimal Solution -- 3.3.1 Problem Analysis -- 3.3.2 Algorithm Design -- 3.4 Simulation Results -- 3.5 Summary -- References -- 4 Intelligent Multi-Dimensional Resource Allocation in MVNETs -- 4.1 System Model -- 4.1.1 Spectrum, Computing, and Caching Allocation -- 4.2 Problem Formulation and Transformation -- 4.2.1 Problem Formulation -- 4.2.2 Problem Transformation with DRL -- 4.3 DDPG Algorithm Based Solution -- 4.3.1 DDPG-Based Algorithm.
4.3.2 HDDPG-Based Algorithm -- 4.4 Simulation Results and Analysis -- 4.5 Summary -- References -- 5 Aerial-Assisted Intelligent Resource Allocation -- 5.1 System Model and Problem Formulation -- 5.1.1 UAV-Assisted MVNET -- 5.1.2 Resource Reservation Models -- 5.1.3 Problem Formulation -- 5.2 Centralized/Distributed Multi-Dimensional ResourceManagement -- 5.2.1 Problem Transformation -- 5.2.2 SADDPG/MADDPG-Based Solutions -- 5.3 Simulation Results -- 5.3.1 Performance Evaluation for the SADDPG-Based Scheme -- 5.3.2 Performance Evaluation for the MADDPG-BasedScheme -- 5.4 Summary -- References -- 6 Conclusions and Future Research Directions -- 6.1 Conclusions -- 6.2 Future Research Directions -- References -- Index. |
Record Nr. | UNINA-9910558496203321 |
Peng Haixia | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Vehicle safety communications : protocols, security, and privacy / / Luca Delgrossi, Tao Zhang |
Autore | Delgrossi Luca |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2012] |
Descrizione fisica | 1 online resource (400 p.) |
Disciplina | 629.2/76 |
Altri autori (Persone) | ZhangTao <1962-> |
Collana | Information and communication technology series |
Soggetto topico |
Vehicular ad hoc networks (Computer networks) - Safety measures
Automobiles - Safety appliances Automobiles - Collision avoidance systems |
ISBN |
1-118-45219-4
1-283-59898-1 1-118-45218-6 9786613911438 1-118-45221-6 |
Classificazione | TEC009020 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
-- Foreword xv / Ralf G. Herrtwich -- Foreword xvii / Flavio Bonomi -- Foreword xix / Adam Drobot -- Preface xxi -- Acknowledgments xxv -- 1 Traffic Safety 1 -- 1.1 Traffic Safety Facts 1 -- 1.1.1 Fatalities 2 -- 1.1.2 Leading Causes of Crashes 3 -- 1.1.3 Current Trends 5 -- 1.2 European Union 5 -- 1.3 Japan 7 -- 1.4 Developing Countries 7 -- References 8 -- 2 Automotive Safety Evolution 10 -- 2.1 Passive Safety 10 -- 2.1.1 Safety Cage and the Birth of Passive Safety 10 -- 2.1.2 Seat Belts 11 -- 2.1.3 Air Bags 11 -- 2.2 Active Safety 12 -- 2.2.1 Antilock Braking System 12 -- 2.2.2 Electronic Stability Control 13 -- 2.2.3 Brake Assist 13 -- 2.3 Advanced Driver Assistance Systems 14 -- 2.3.1 Adaptive Cruise Control 15 -- 2.3.2 Blind Spot Assist 16 -- 2.3.3 Attention Assist 16 -- 2.3.4 Precrash Systems 16 -- 2.4 Cooperative Safety 17 -- References 18 -- 3 Vehicle Architectures 20 -- 3.1 Electronic Control Units 20 -- 3.2 Vehicle Sensors 21 -- 3.2.1 Radars 21 -- 3.2.2 Cameras 21 -- 3.3 Onboard Communication Networks 22 -- 3.3.1 Controller Area Network 23 -- 3.3.2 Local Interconnect Network 23 -- 3.3.3 FlexRay 24 -- 3.3.4 Media Oriented Systems Transport 24 -- 3.3.5 Onboard Diagnostics 24 -- 3.4 Vehicle Data 25 -- 3.5 Vehicle Data Security 26 -- 3.6 Vehicle Positioning 27 -- 3.6.1 Global Positioning System 27 -- 3.6.2 Galileo 29 -- 3.6.3 Global Navigation Satellite System 29 -- 3.6.4 Positioning Accuracy 30 -- References 30 -- 4 Connected Vehicles 32 -- 4.1 Connected Vehicle Applications 32 -- 4.1.1 Hard Safety Applications 32 -- 4.1.2 Soft Safety Applications 33 -- 4.1.3 Mobility and Convenience Applications 33 -- 4.2 Uniqueness in Consumer Vehicle Networks 34 -- 4.3 Vehicle Communication Modes 36 -- 4.3.1 Vehicle-to-Vehicle Local Broadcast 36 -- 4.3.2 V2V Multihop Message Dissemination 37 -- 4.3.3 Infrastructure-to-Vehicle Local Broadcast 38 -- 4.3.4 Vehicle-to-Infrastructure Bidirectional Communications 39 -- 4.4 Wireless Communications Technology for Vehicles 39 -- References 42.
5 Dedicated Short-Range Communications 44 -- 5.1 The 5.9 GHz Spectrum 44 -- 5.1.1 DSRC Frequency Band Usage 45 -- 5.1.2 DSRC Channels 45 -- 5.1.3 DSRC Operations 46 -- 5.2 DSRC in the European Union 46 -- 5.3 DSRC in Japan 47 -- 5.4 DSRC Standards 48 -- 5.4.1 Wireless Access in Vehicular Environments 48 -- 5.4.2 Wireless Access in Vehicular Environments Protocol Stack 48 -- 5.4.3 International Harmonization 50 -- References 50 -- 6 WAVE Physical Layer 52 -- 6.1 Physical Layer Operations 52 -- 6.1.1 Orthogonal Frequency Division Multiplexing 52 -- 6.1.2 Modulation and Coding Rates 53 -- 6.1.3 Frame Reception 54 -- 6.2 PHY Amendments 55 -- 6.2.1 Channel Width 56 -- 6.2.2 Spectrum Masks 56 -- 6.2.3 Improved Receiver Performance 57 -- 6.3 PHY Layer Modeling 57 -- 6.3.1 Network Simulator Architecture 58 -- 6.3.2 RF Model 59 -- 6.3.3 Wireless PHY 61 -- References 62 -- 7 WAVE Media Access Control Layer 64 -- 7.1 Media Access Control Layer Operations 64 -- 7.1.1 Carrier Sensing Multiple Access with Collision Avoidance 64 -- 7.1.2 Hidden Terminal Effects 65 -- 7.1.3 Basic Service Set 66 -- 7.2 MAC Layer Amendments 66 -- 7.3 MAC Layer Modeling 67 -- 7.3.1 Transmission 68 -- 7.3.2 Reception 68 -- 7.3.3 Channel State Manager 68 -- 7.3.4 Back-Off Manager 69 -- 7.3.5 Transmission Coordination 70 -- 7.3.6 Reception Coordination 71 -- 7.4 Overhauled ns-2 Implementation 72 -- References 74 -- 8 DSRC Data Rates 75 -- 8.1 Introduction 75 -- 8.2 Communication Density 76 -- 8.2.1 Simulation Study 77 -- 8.2.2 Broadcast Reception Rates 78 -- 8.2.3 Channel Access Delay 81 -- 8.2.4 Frames Reception Failures 83 -- 8.3 Optimal Data Rate 85 -- 8.3.1 Modulation and Coding Rates 85 -- 8.3.2 Simulation Study 86 -- 8.3.3 Simulation Matrix 87 -- 8.3.4 Simulation Results 88 -- References 91 -- 9 WAVE Upper Layers 93 -- 9.1 Introduction 93 -- 9.2 DSRC Multichannel Operations 94 -- 9.2.1 Time Synchronization 94 -- 9.2.2 Synchronization Intervals 95 -- 9.2.3 Guard Intervals 96 -- 9.2.4 Channel Switching 96. 9.2.5 Channel Switching State Machine 96 -- 9.3 Protocol Evaluation 97 -- 9.3.1 Simulation Study 98 -- 9.3.2 Simulation Scenarios 99 -- 9.3.3 Simulation Results 99 -- 9.3.4 Protocol Enhancements 102 -- 9.4 WAVE Short Message Protocol 103 -- References 104 -- 10 Vehicle-to-Infrastructure Safety Applications 106 -- 10.1 Intersection Crashes 106 -- 10.2 Cooperative Intersection Collision Avoidance System for Violations 107 -- 10.2.1 CICAS-V Design 107 -- 10.2.2 CICAS-V Development 110 -- 10.2.3 CICAS-V Testing 116 -- 10.3 Integrated Safety Demonstration 118 -- 10.3.1 Demonstration Concept 118 -- 10.3.2 Hardware Components 120 -- 10.3.3 Demo Design 121 -- References 124 -- 11 Vehicle-to-Vehicle Safety Applications 126 -- 11.1 Cooperation among Vehicles 126 -- 11.2 V2V Safety Applications 127 -- 11.3 V2V Safety Applications Design 128 -- 11.3.1 Basic Safety Messages 129 -- 11.3.2 Minimum Performance Requirements 129 -- 11.3.3 Target Classifi cation 131 -- 11.3.4 Vehicle Representation 132 -- 11.3.5 Sample Applications 133 -- 11.4 System Implementation 135 -- 11.4.1 Onboard Unit Hardware Components 135 -- 11.4.2 OBU Software Architecture 135 -- 11.4.3 Driver / Vehicle Interface 137 -- 11.5 System Testing 138 -- 11.5.1 Communications Coverage and Antenna Considerations 138 -- 11.5.2 Positioning 139 -- References 140 -- 12 DSRC Scalability 141 -- 12.1 Introduction 141 -- 12.2 DSRC Data Traffic 142 -- 12.2.1 DSRC Safety Messages 142 -- 12.2.2 Transmission Parameters 143 -- 12.2.3 Channel Load Assessment 144 -- 12.3 Congestion Control Algorithms 145 -- 12.3.1 Desired Properties 145 -- 12.3.2 Transmission Power Adjustment 146 -- 12.3.3 Message Rate Adjustment 147 -- 12.3.4 Simulation Study 148 -- 12.4 Conclusions 148 -- References 149 -- 13 Security and Privacy Threats and Requirements 151 -- 13.1 Introduction 151 -- 13.2 Adversaries 151 -- 13.3 Security Threats 152 -- 13.3.1 Send False Safety Messages Using Valid Security Credentials 152 -- 13.3.2 Falsely Accuse Innocent Vehicles 153. 13.3.3 Impersonate Vehicles or Other Network Entities 153 -- 13.3.4 Denial-of-Service Attacks Specific to Consumer Vehicle Networks 154 -- 13.3.5 Compromise OBU Software or Firmware 155 -- 13.4 Privacy Threats 155 -- 13.4.1 Privacy in a Vehicle Network 155 -- 13.4.2 Privacy Threats in Consumer Vehicle Networks 156 -- 13.4.3 How Driver Privacy can be Breached Today 158 -- 13.5 Basic Security Capabilities 159 -- 13.5.1 Authentication 159 -- 13.5.2 Misbehavior Detection and Revocation 160 -- 13.5.3 Data Integrity 160 -- 13.5.4 Data Confidentiality 160 -- 13.6 Privacy Protections Capabilities 161 -- 13.7 Design and Performance Considerations 161 -- 13.7.1 Scalability 162 -- 13.7.2 Balancing Competing Requirements 162 -- 13.7.3 Minimal Side Effects 163 -- 13.7.4 Quantifi able Levels of Security and Privacy 163 -- 13.7.5 Adaptability 163 -- 13.7.6 Security and Privacy Protection for V2V Broadcast 163 -- 13.7.7 Security and Privacy Protection for Communications with Security Servers 164 -- References 165 -- 14 Cryptographic Mechanisms 167 -- 14.1 Introduction 167 -- 14.2 Categories of Cryptographic Mechanisms 167 -- 14.2.1 Cryptographic Hash Functions 168 -- 14.2.2 Symmetric Key Algorithms 169 -- 14.2.3 Public Key (Asymmetric Key) Algorithms 170 -- 14.3 Digital Signature Algorithms 172 -- 14.3.1 The RSA Algorithm 172 -- 14.3.2 The DSA Algorithm 178 -- 14.3.3 The ECDSA Algorithm 184 -- 14.3.4 ECDSA for Vehicle Safety Communications 194 -- 14.4 Message Authentication and Message Integrity Verifi cation 196 -- 14.4.1 Authentication and Integrity Verifi cation Using Hash Functions 197 -- 14.4.2 Authentication and Integrity Verifi cation Using Digital Signatures 198 -- 14.5 Diffi e / Hellman Key Establishment Protocol 200 -- 14.5.1 The Original Diffie / Hellman Key Establishment Protocol 200 -- 14.5.2 Elliptic Curve Diffie / Hellman Key Establishment Protocol 201 -- 14.6 Elliptic Curve Integrated Encryption Scheme (ECIES) 202 -- 14.6.1 The Basic Idea 202 -- 14.6.2 Scheme Setup 202. 14.6.3 Encrypt a Message 202 -- 14.6.4 Decrypt a Message 204 -- 14.6.5 Performance 204 -- References 206 -- 15 Public Key Infrastructure for Vehicle Networks 209 -- 15.1 Introduction 209 -- 15.2 Public Key Certificates 210 -- 15.3 Message Authentication with Certificates 211 -- 15.4 Certifi cate Revocation List 212 -- 15.5 A Baseline Reference Vehicular PKI Model 213 -- 15.6 Confi gure Initial Security Parameters and Assign Initial Certificates 215 -- 15.6.1 Vehicles Create Their Private and Public Keys 216 -- 15.6.2 Certificate Authority Creates Private and Public Keys for Vehicles 217 -- 15.7 Acquire New Keys and Certifi cates 217 -- 15.8 Distribute Certifi cates to Vehicles for Signature Verifications 220 -- 15.9 Detect Misused Certifi cates and Misbehaving Vehicles 222 -- 15.9.1 Local Misbehavior Detection 223 -- 15.9.2 Global Misbehavior Detection 224 -- 15.9.3 Misbehavior Reporting 224 -- 15.10 Ways for Vehicles to Acquire CRLs 226 -- 15.11 How Often CRLs should be Distributed to Vehicles? 228 -- 15.12 PKI Hierarchy 230 -- 15.12.1 Certifi cate Chaining to Enable Hierarchical CAs 231 -- 15.12.2 Hierarchical CA Architecture Example 231 -- 15.13 Privacy-Preserving Vehicular PKI 233 -- 15.13.1 Quantitative Measurements of Vehicle Anonymity 234 -- 15.13.2 Quantitative Measurement of Message Unlinkability 234 -- References 235 -- 16 Privacy Protection with Shared Certificates 237 -- 16.1 Shared Certificates 237 -- 16.2 The Combinatorial Certificate Scheme 237 -- 16.3 Certificate Revocation Collateral Damage 239 -- 16.4 Certified Intervals 242 -- 16.4.1 The Concept of Certified Interval 242 -- 16.4.2 Certified Interval Produced by the Original Combinatorial Certificate Scheme 242 -- 16.5 Reduce Collateral Damage and Improve Certified Interval 244 -- 16.5.1 Reduce Collateral Damage Caused by a Single Misused Certificate 245 -- 16.5.2 Vehicles Become Statistically Distinguishable When Misusing Multiple Certificates 248 -- 16.5.3 The Dynamic Reward Algorithm 250 -- 16.6 Privacy in Low Vehicle Density Areas 253. 16.6.1 The Problem 253 -- 16.6.2 The Blend-In Algorithm to Improve Privacy 256 -- References 259 -- 17 Privacy Protection with Short-Lived Unique Certificates 260 -- 17.1 Short-Lived Unique Certificates 260 -- 17.2 The Basic Short-Lived Certificate Scheme 261 -- 17.3 The Problem of Large CRL 263 -- 17.4 Anonymously Linked Certificates to Reduce CRL Size 264 -- 17.4.1 Certificate Tags 264 -- 17.4.2 CRL Processing by Vehicles 265 -- 17.4.3 Backward Unlinkability 267 -- 17.5 Reduce CRL Search Time 268 -- 17.6 Unlinked Short-Lived Certificates 269 -- 17.7 Reduce the Volume of Certificate Request and Response Messages 270 -- 17.8 Determine the Number of Certificates for Each Vehicle 270 -- References 273 -- 18 Privacy Protection with Group Signatures 274 -- 18.1 Group Signatures 274 -- 18.2 Zero-Knowledge Proof of Knowledge 275 -- 18.3 The ACJT Group Signature Scheme and its Extensions 277 -- 18.3.1 The ACJT Group Signature Scheme 277 -- 18.3.2 The Challenge of Group Membership Revocation 282 -- 18.3.3 ACJT Extensions to Support Membership Revocation 283 -- 18.4 The CG Group Signature Scheme with Revocation 286 -- 18.5 The Short Group Signatures Scheme 288 -- 18.5.1 The Short Group Signatures Scheme 288 -- 18.5.2 Membership Revocation 291 -- 18.6 Group Signature Schemes with Verifier-Local Revocation 292 -- References 293 -- 19 Privacy Protection against Certificate Authorities 295 -- 19.1 Introduction 295 -- 19.2 Basic Idea 295 -- 19.3 Baseline Split CA Architecture, Protocol, and Message Processing 297 -- 19.4 Split CA Architecture for Shared Certifi cates 301 -- 19.5 Split CA Architecture for Unlinked Short-Lived Certificates 302 -- 19.5.1 Acquire One Unlinked Certifi cate at a Time 302 -- 19.5.2 Assign Batches of Unlinked Short-Lived Certifi cates 304 -- 19.5.3 Revoke Batches of Unlinked Certifi cates 306 -- 19.5.4 Request for Decryption Keys for Certificate Batches 307 -- 19.6 Split CA Architecture for Anonymously Linked Short-Lived Certificates 308 -- 19.6.1 Assign One Anonymously Linked Short-Lived Certificate at a Time 308. 19.6.2 Assign Batches of Anonymously Linked Short-Lived Certificates 311 -- 19.6.3 Revoke Batches of Anonymously Linked Short-Lived Certificates 312 -- 19.6.4 Request for Decryption Keys for Certificate Batches 313 -- References 314 -- 20 Comparison of Privacy-Preserving Certificate Management Schemes 315 -- 20.1 Introduction 315 -- 20.2 Comparison of Main Characteristics 316 -- 20.3 Misbehavior Detection 320 -- 20.4 Abilities to Prevent Privacy Abuse by CA and MDS Operators 321 -- 20.5 Summary 322 -- 21 IEEE 1609.2 Security Services 323 -- 21.1 Introduction 323 -- 21.2 The IEEE 1609.2 Standard 323 -- 21.3 Certificates and Certificate Authority Hierarchy 325 -- 21.4 Formats for Public Key, Signature, Certificate, and CRL 327 -- 21.4.1 Public Key Formats 327 -- 21.4.2 Signature Formats 328 -- 21.4.3 Certificate Format 329 -- 21.4.4 CRL Format 332 -- 21.5 Message Formats and Processing for Generating Encrypted Messages 333 -- 21.6 Sending Messages 335 -- 21.7 Request Certifi cates from the CA 336 -- 21.8 Request and Processing CRL 343 -- 21.9 What the Current IEEE 1609.2 Standard Does Not Cover 344 -- 21.9.1 No Support for Anonymous Message Authentication 344 -- 21.9.2 Separate Vehicle-CA Communication Protocols Are Required 344 -- 21.9.3 Interactions and Interfaces between CA Entities Not Addressed / 346 -- References 346 -- 22 4G for Vehicle Safety Communications 347 -- 22.1 Introduction 347 -- 22.2 Long-Term Revolution (LTE) 347 -- 22.3 LTE for Vehicle Safety Communications/ 353 -- 22.3.1 Issues to Be Addressed 353 -- 22.3.2 LTE for V2I Safety Communications 353 -- 22.3.3 LTE for V2V Safety Communications 356 -- 22.3.4 LTE Broadcast and Multicast Services 357 -- References 358 -- Glossary 360 -- Index 367. |
Record Nr. | UNINA-9910141390903321 |
Delgrossi Luca | ||
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2012] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Vehicle safety communications : protocols, security, and privacy / / Luca Delgrossi, Tao Zhang |
Autore | Delgrossi Luca |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, : Wiley, 2012 |
Descrizione fisica | 1 online resource (400 p.) |
Disciplina | 629.2/76 |
Altri autori (Persone) | ZhangTao <1962-> |
Collana | Wiley series on information and communication technology |
Soggetto topico |
Vehicular ad hoc networks (Computer networks) - Safety measures
Automobiles - Safety appliances Automobiles - Collision avoidance systems |
ISBN |
1-118-45219-4
1-283-59898-1 1-118-45218-6 9786613911438 1-118-45221-6 |
Classificazione | TEC009020 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
-- Foreword xv / Ralf G. Herrtwich -- Foreword xvii / Flavio Bonomi -- Foreword xix / Adam Drobot -- Preface xxi -- Acknowledgments xxv -- 1 Traffic Safety 1 -- 1.1 Traffic Safety Facts 1 -- 1.1.1 Fatalities 2 -- 1.1.2 Leading Causes of Crashes 3 -- 1.1.3 Current Trends 5 -- 1.2 European Union 5 -- 1.3 Japan 7 -- 1.4 Developing Countries 7 -- References 8 -- 2 Automotive Safety Evolution 10 -- 2.1 Passive Safety 10 -- 2.1.1 Safety Cage and the Birth of Passive Safety 10 -- 2.1.2 Seat Belts 11 -- 2.1.3 Air Bags 11 -- 2.2 Active Safety 12 -- 2.2.1 Antilock Braking System 12 -- 2.2.2 Electronic Stability Control 13 -- 2.2.3 Brake Assist 13 -- 2.3 Advanced Driver Assistance Systems 14 -- 2.3.1 Adaptive Cruise Control 15 -- 2.3.2 Blind Spot Assist 16 -- 2.3.3 Attention Assist 16 -- 2.3.4 Precrash Systems 16 -- 2.4 Cooperative Safety 17 -- References 18 -- 3 Vehicle Architectures 20 -- 3.1 Electronic Control Units 20 -- 3.2 Vehicle Sensors 21 -- 3.2.1 Radars 21 -- 3.2.2 Cameras 21 -- 3.3 Onboard Communication Networks 22 -- 3.3.1 Controller Area Network 23 -- 3.3.2 Local Interconnect Network 23 -- 3.3.3 FlexRay 24 -- 3.3.4 Media Oriented Systems Transport 24 -- 3.3.5 Onboard Diagnostics 24 -- 3.4 Vehicle Data 25 -- 3.5 Vehicle Data Security 26 -- 3.6 Vehicle Positioning 27 -- 3.6.1 Global Positioning System 27 -- 3.6.2 Galileo 29 -- 3.6.3 Global Navigation Satellite System 29 -- 3.6.4 Positioning Accuracy 30 -- References 30 -- 4 Connected Vehicles 32 -- 4.1 Connected Vehicle Applications 32 -- 4.1.1 Hard Safety Applications 32 -- 4.1.2 Soft Safety Applications 33 -- 4.1.3 Mobility and Convenience Applications 33 -- 4.2 Uniqueness in Consumer Vehicle Networks 34 -- 4.3 Vehicle Communication Modes 36 -- 4.3.1 Vehicle-to-Vehicle Local Broadcast 36 -- 4.3.2 V2V Multihop Message Dissemination 37 -- 4.3.3 Infrastructure-to-Vehicle Local Broadcast 38 -- 4.3.4 Vehicle-to-Infrastructure Bidirectional Communications 39 -- 4.4 Wireless Communications Technology for Vehicles 39 -- References 42.
5 Dedicated Short-Range Communications 44 -- 5.1 The 5.9 GHz Spectrum 44 -- 5.1.1 DSRC Frequency Band Usage 45 -- 5.1.2 DSRC Channels 45 -- 5.1.3 DSRC Operations 46 -- 5.2 DSRC in the European Union 46 -- 5.3 DSRC in Japan 47 -- 5.4 DSRC Standards 48 -- 5.4.1 Wireless Access in Vehicular Environments 48 -- 5.4.2 Wireless Access in Vehicular Environments Protocol Stack 48 -- 5.4.3 International Harmonization 50 -- References 50 -- 6 WAVE Physical Layer 52 -- 6.1 Physical Layer Operations 52 -- 6.1.1 Orthogonal Frequency Division Multiplexing 52 -- 6.1.2 Modulation and Coding Rates 53 -- 6.1.3 Frame Reception 54 -- 6.2 PHY Amendments 55 -- 6.2.1 Channel Width 56 -- 6.2.2 Spectrum Masks 56 -- 6.2.3 Improved Receiver Performance 57 -- 6.3 PHY Layer Modeling 57 -- 6.3.1 Network Simulator Architecture 58 -- 6.3.2 RF Model 59 -- 6.3.3 Wireless PHY 61 -- References 62 -- 7 WAVE Media Access Control Layer 64 -- 7.1 Media Access Control Layer Operations 64 -- 7.1.1 Carrier Sensing Multiple Access with Collision Avoidance 64 -- 7.1.2 Hidden Terminal Effects 65 -- 7.1.3 Basic Service Set 66 -- 7.2 MAC Layer Amendments 66 -- 7.3 MAC Layer Modeling 67 -- 7.3.1 Transmission 68 -- 7.3.2 Reception 68 -- 7.3.3 Channel State Manager 68 -- 7.3.4 Back-Off Manager 69 -- 7.3.5 Transmission Coordination 70 -- 7.3.6 Reception Coordination 71 -- 7.4 Overhauled ns-2 Implementation 72 -- References 74 -- 8 DSRC Data Rates 75 -- 8.1 Introduction 75 -- 8.2 Communication Density 76 -- 8.2.1 Simulation Study 77 -- 8.2.2 Broadcast Reception Rates 78 -- 8.2.3 Channel Access Delay 81 -- 8.2.4 Frames Reception Failures 83 -- 8.3 Optimal Data Rate 85 -- 8.3.1 Modulation and Coding Rates 85 -- 8.3.2 Simulation Study 86 -- 8.3.3 Simulation Matrix 87 -- 8.3.4 Simulation Results 88 -- References 91 -- 9 WAVE Upper Layers 93 -- 9.1 Introduction 93 -- 9.2 DSRC Multichannel Operations 94 -- 9.2.1 Time Synchronization 94 -- 9.2.2 Synchronization Intervals 95 -- 9.2.3 Guard Intervals 96 -- 9.2.4 Channel Switching 96. 9.2.5 Channel Switching State Machine 96 -- 9.3 Protocol Evaluation 97 -- 9.3.1 Simulation Study 98 -- 9.3.2 Simulation Scenarios 99 -- 9.3.3 Simulation Results 99 -- 9.3.4 Protocol Enhancements 102 -- 9.4 WAVE Short Message Protocol 103 -- References 104 -- 10 Vehicle-to-Infrastructure Safety Applications 106 -- 10.1 Intersection Crashes 106 -- 10.2 Cooperative Intersection Collision Avoidance System for Violations 107 -- 10.2.1 CICAS-V Design 107 -- 10.2.2 CICAS-V Development 110 -- 10.2.3 CICAS-V Testing 116 -- 10.3 Integrated Safety Demonstration 118 -- 10.3.1 Demonstration Concept 118 -- 10.3.2 Hardware Components 120 -- 10.3.3 Demo Design 121 -- References 124 -- 11 Vehicle-to-Vehicle Safety Applications 126 -- 11.1 Cooperation among Vehicles 126 -- 11.2 V2V Safety Applications 127 -- 11.3 V2V Safety Applications Design 128 -- 11.3.1 Basic Safety Messages 129 -- 11.3.2 Minimum Performance Requirements 129 -- 11.3.3 Target Classifi cation 131 -- 11.3.4 Vehicle Representation 132 -- 11.3.5 Sample Applications 133 -- 11.4 System Implementation 135 -- 11.4.1 Onboard Unit Hardware Components 135 -- 11.4.2 OBU Software Architecture 135 -- 11.4.3 Driver / Vehicle Interface 137 -- 11.5 System Testing 138 -- 11.5.1 Communications Coverage and Antenna Considerations 138 -- 11.5.2 Positioning 139 -- References 140 -- 12 DSRC Scalability 141 -- 12.1 Introduction 141 -- 12.2 DSRC Data Traffic 142 -- 12.2.1 DSRC Safety Messages 142 -- 12.2.2 Transmission Parameters 143 -- 12.2.3 Channel Load Assessment 144 -- 12.3 Congestion Control Algorithms 145 -- 12.3.1 Desired Properties 145 -- 12.3.2 Transmission Power Adjustment 146 -- 12.3.3 Message Rate Adjustment 147 -- 12.3.4 Simulation Study 148 -- 12.4 Conclusions 148 -- References 149 -- 13 Security and Privacy Threats and Requirements 151 -- 13.1 Introduction 151 -- 13.2 Adversaries 151 -- 13.3 Security Threats 152 -- 13.3.1 Send False Safety Messages Using Valid Security Credentials 152 -- 13.3.2 Falsely Accuse Innocent Vehicles 153. 13.3.3 Impersonate Vehicles or Other Network Entities 153 -- 13.3.4 Denial-of-Service Attacks Specific to Consumer Vehicle Networks 154 -- 13.3.5 Compromise OBU Software or Firmware 155 -- 13.4 Privacy Threats 155 -- 13.4.1 Privacy in a Vehicle Network 155 -- 13.4.2 Privacy Threats in Consumer Vehicle Networks 156 -- 13.4.3 How Driver Privacy can be Breached Today 158 -- 13.5 Basic Security Capabilities 159 -- 13.5.1 Authentication 159 -- 13.5.2 Misbehavior Detection and Revocation 160 -- 13.5.3 Data Integrity 160 -- 13.5.4 Data Confidentiality 160 -- 13.6 Privacy Protections Capabilities 161 -- 13.7 Design and Performance Considerations 161 -- 13.7.1 Scalability 162 -- 13.7.2 Balancing Competing Requirements 162 -- 13.7.3 Minimal Side Effects 163 -- 13.7.4 Quantifi able Levels of Security and Privacy 163 -- 13.7.5 Adaptability 163 -- 13.7.6 Security and Privacy Protection for V2V Broadcast 163 -- 13.7.7 Security and Privacy Protection for Communications with Security Servers 164 -- References 165 -- 14 Cryptographic Mechanisms 167 -- 14.1 Introduction 167 -- 14.2 Categories of Cryptographic Mechanisms 167 -- 14.2.1 Cryptographic Hash Functions 168 -- 14.2.2 Symmetric Key Algorithms 169 -- 14.2.3 Public Key (Asymmetric Key) Algorithms 170 -- 14.3 Digital Signature Algorithms 172 -- 14.3.1 The RSA Algorithm 172 -- 14.3.2 The DSA Algorithm 178 -- 14.3.3 The ECDSA Algorithm 184 -- 14.3.4 ECDSA for Vehicle Safety Communications 194 -- 14.4 Message Authentication and Message Integrity Verifi cation 196 -- 14.4.1 Authentication and Integrity Verifi cation Using Hash Functions 197 -- 14.4.2 Authentication and Integrity Verifi cation Using Digital Signatures 198 -- 14.5 Diffi e / Hellman Key Establishment Protocol 200 -- 14.5.1 The Original Diffie / Hellman Key Establishment Protocol 200 -- 14.5.2 Elliptic Curve Diffie / Hellman Key Establishment Protocol 201 -- 14.6 Elliptic Curve Integrated Encryption Scheme (ECIES) 202 -- 14.6.1 The Basic Idea 202 -- 14.6.2 Scheme Setup 202. 14.6.3 Encrypt a Message 202 -- 14.6.4 Decrypt a Message 204 -- 14.6.5 Performance 204 -- References 206 -- 15 Public Key Infrastructure for Vehicle Networks 209 -- 15.1 Introduction 209 -- 15.2 Public Key Certificates 210 -- 15.3 Message Authentication with Certificates 211 -- 15.4 Certifi cate Revocation List 212 -- 15.5 A Baseline Reference Vehicular PKI Model 213 -- 15.6 Confi gure Initial Security Parameters and Assign Initial Certificates 215 -- 15.6.1 Vehicles Create Their Private and Public Keys 216 -- 15.6.2 Certificate Authority Creates Private and Public Keys for Vehicles 217 -- 15.7 Acquire New Keys and Certifi cates 217 -- 15.8 Distribute Certifi cates to Vehicles for Signature Verifications 220 -- 15.9 Detect Misused Certifi cates and Misbehaving Vehicles 222 -- 15.9.1 Local Misbehavior Detection 223 -- 15.9.2 Global Misbehavior Detection 224 -- 15.9.3 Misbehavior Reporting 224 -- 15.10 Ways for Vehicles to Acquire CRLs 226 -- 15.11 How Often CRLs should be Distributed to Vehicles? 228 -- 15.12 PKI Hierarchy 230 -- 15.12.1 Certifi cate Chaining to Enable Hierarchical CAs 231 -- 15.12.2 Hierarchical CA Architecture Example 231 -- 15.13 Privacy-Preserving Vehicular PKI 233 -- 15.13.1 Quantitative Measurements of Vehicle Anonymity 234 -- 15.13.2 Quantitative Measurement of Message Unlinkability 234 -- References 235 -- 16 Privacy Protection with Shared Certificates 237 -- 16.1 Shared Certificates 237 -- 16.2 The Combinatorial Certificate Scheme 237 -- 16.3 Certificate Revocation Collateral Damage 239 -- 16.4 Certified Intervals 242 -- 16.4.1 The Concept of Certified Interval 242 -- 16.4.2 Certified Interval Produced by the Original Combinatorial Certificate Scheme 242 -- 16.5 Reduce Collateral Damage and Improve Certified Interval 244 -- 16.5.1 Reduce Collateral Damage Caused by a Single Misused Certificate 245 -- 16.5.2 Vehicles Become Statistically Distinguishable When Misusing Multiple Certificates 248 -- 16.5.3 The Dynamic Reward Algorithm 250 -- 16.6 Privacy in Low Vehicle Density Areas 253. 16.6.1 The Problem 253 -- 16.6.2 The Blend-In Algorithm to Improve Privacy 256 -- References 259 -- 17 Privacy Protection with Short-Lived Unique Certificates 260 -- 17.1 Short-Lived Unique Certificates 260 -- 17.2 The Basic Short-Lived Certificate Scheme 261 -- 17.3 The Problem of Large CRL 263 -- 17.4 Anonymously Linked Certificates to Reduce CRL Size 264 -- 17.4.1 Certificate Tags 264 -- 17.4.2 CRL Processing by Vehicles 265 -- 17.4.3 Backward Unlinkability 267 -- 17.5 Reduce CRL Search Time 268 -- 17.6 Unlinked Short-Lived Certificates 269 -- 17.7 Reduce the Volume of Certificate Request and Response Messages 270 -- 17.8 Determine the Number of Certificates for Each Vehicle 270 -- References 273 -- 18 Privacy Protection with Group Signatures 274 -- 18.1 Group Signatures 274 -- 18.2 Zero-Knowledge Proof of Knowledge 275 -- 18.3 The ACJT Group Signature Scheme and its Extensions 277 -- 18.3.1 The ACJT Group Signature Scheme 277 -- 18.3.2 The Challenge of Group Membership Revocation 282 -- 18.3.3 ACJT Extensions to Support Membership Revocation 283 -- 18.4 The CG Group Signature Scheme with Revocation 286 -- 18.5 The Short Group Signatures Scheme 288 -- 18.5.1 The Short Group Signatures Scheme 288 -- 18.5.2 Membership Revocation 291 -- 18.6 Group Signature Schemes with Verifier-Local Revocation 292 -- References 293 -- 19 Privacy Protection against Certificate Authorities 295 -- 19.1 Introduction 295 -- 19.2 Basic Idea 295 -- 19.3 Baseline Split CA Architecture, Protocol, and Message Processing 297 -- 19.4 Split CA Architecture for Shared Certifi cates 301 -- 19.5 Split CA Architecture for Unlinked Short-Lived Certificates 302 -- 19.5.1 Acquire One Unlinked Certifi cate at a Time 302 -- 19.5.2 Assign Batches of Unlinked Short-Lived Certifi cates 304 -- 19.5.3 Revoke Batches of Unlinked Certifi cates 306 -- 19.5.4 Request for Decryption Keys for Certificate Batches 307 -- 19.6 Split CA Architecture for Anonymously Linked Short-Lived Certificates 308 -- 19.6.1 Assign One Anonymously Linked Short-Lived Certificate at a Time 308. 19.6.2 Assign Batches of Anonymously Linked Short-Lived Certificates 311 -- 19.6.3 Revoke Batches of Anonymously Linked Short-Lived Certificates 312 -- 19.6.4 Request for Decryption Keys for Certificate Batches 313 -- References 314 -- 20 Comparison of Privacy-Preserving Certificate Management Schemes 315 -- 20.1 Introduction 315 -- 20.2 Comparison of Main Characteristics 316 -- 20.3 Misbehavior Detection 320 -- 20.4 Abilities to Prevent Privacy Abuse by CA and MDS Operators 321 -- 20.5 Summary 322 -- 21 IEEE 1609.2 Security Services 323 -- 21.1 Introduction 323 -- 21.2 The IEEE 1609.2 Standard 323 -- 21.3 Certificates and Certificate Authority Hierarchy 325 -- 21.4 Formats for Public Key, Signature, Certificate, and CRL 327 -- 21.4.1 Public Key Formats 327 -- 21.4.2 Signature Formats 328 -- 21.4.3 Certificate Format 329 -- 21.4.4 CRL Format 332 -- 21.5 Message Formats and Processing for Generating Encrypted Messages 333 -- 21.6 Sending Messages 335 -- 21.7 Request Certifi cates from the CA 336 -- 21.8 Request and Processing CRL 343 -- 21.9 What the Current IEEE 1609.2 Standard Does Not Cover 344 -- 21.9.1 No Support for Anonymous Message Authentication 344 -- 21.9.2 Separate Vehicle-CA Communication Protocols Are Required 344 -- 21.9.3 Interactions and Interfaces between CA Entities Not Addressed / 346 -- References 346 -- 22 4G for Vehicle Safety Communications 347 -- 22.1 Introduction 347 -- 22.2 Long-Term Revolution (LTE) 347 -- 22.3 LTE for Vehicle Safety Communications/ 353 -- 22.3.1 Issues to Be Addressed 353 -- 22.3.2 LTE for V2I Safety Communications 353 -- 22.3.3 LTE for V2V Safety Communications 356 -- 22.3.4 LTE Broadcast and Multicast Services 357 -- References 358 -- Glossary 360 -- Index 367. |
Record Nr. | UNINA-9910828065603321 |
Delgrossi Luca | ||
Hoboken, : Wiley, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|