Analysis in vector spaces [[electronic resource] ] : a course in advanced calculus / / Mustafa A. Akcoglu, Paul F.A. Bartha, Dzung M. Ha |
Autore | Akcoglu Mustafa A (Mustafa Agah), <1934-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2009 |
Descrizione fisica | 1 online resource (480 p.) |
Disciplina |
512.52
512/.52 |
Altri autori (Persone) |
BarthaPaul F. A. <1964->
HaDzung Minh |
Soggetto topico |
Vector spaces
Functional analysis |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-27395-0
9786613273956 1-118-16458-X 1-118-16459-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Analysis in Vector Spaces: A Course in Advanced Calculus; CONTENTS; Preface; PART I BACKGROUND MATERIAL; 1 Sets and Functions; 1.1 Sets in General; 1.2 Sets of Numbers; 1.3 Functions; 2 Real Numbers; 2.1 Review of the Order Relations; 2.2 Completeness of Real Numbers; 2.3 Sequences of Real Numbers; 2.4 Subsequences; 2.5 Series of Real Numbers; 2.6 Intervals and Connected Sets; 3 Vector Functions; 3.1 Vector Spaces: The Basics; 3.2 Bilinear Functions; 3.3 Multilinear Functions; 3.4 Inner Products; 3.5 Orthogonal Projections; 3.6 Spectral Theorem; PART II DIFFERENTIATION; 4 Normed Vector Spaces
4.1 Preliminaries4.2 Convergence in Normed Spaces; 4.3 Norms of Linear and Multilinear Transformations; 4.4 Continuity in Normed Spaces; 4.5 Topology of Normed Spaces; 5 Derivatives; 5.1 Functions of a Real Variable; 5.2 Differentiable Functions; 5.3 Existence of Derivatives; 5.4 Partial Derivatives; 5.5 Rules of Differentiation; 5.6 Differentiation of Products; 6 Diffeomorphisms and Manifolds; 6.1 The Inverse Function Theorem; 6.2 Graphs; 6.3 Manifolds in Parametric Representations; 6.4 Manifolds in Implicit Representations; 6.5 Differentiation on Manifolds; 7 Higher-Order Derivatives 7.1 Definitions7.2 Change of Order in Differentiation; 7.3 Sequences of Polynomials; 7.4 Local Extremal Values; PART III INTEGRATION; 8 Multiple Integrals; 8.1 Jordan Sets and Volume; 8.2 Integrals; 8.3 Images of Jordan Sets; 8.4 Change of Variables; 9 Integration on Manifolds; 9.1 Euclidean Volumes; 9.2 Integration on Manifolds; 9.3 Oriented Manifolds; 9.4 Integrals of Vector Fields; 9.5 Integrals of Tensor Fields; 9.6 Integration on Graphs; 10 Stokes' Theorem; 10.1 Basic Stokes' Theorem; 10.2 Flows; 10.3 Flux and Change of Volume in a Flow; 10.4 Exterior Derivatives 10.5 Regular and Almost Regular Sets10.6 Stokes' theorem on Manifolds; PART IV APPENDICES; Appendix A: Construction of the real numbers; A.1 Field and Order Axioms in Q; A.2 Equivalence Classes of Cauchy Sequences in Q; A.3 Completeness of R; Appendix B: Dimension of a vector space; B.1 Bases and linearly independent subsets; Appendix C: Determinants; C.1 Permutations; C.2 Determinants of Square Matrices; C.3 Determinant Functions; C.4 Determinant of a Linear Transformation; C.5 Determinants on Cartesian Products; C.6 Determinants in Euclidean Spaces; C.7 Trace of an Operator Appendix D: Partitions of unityD.1 Partitions of Unity; Index |
Record Nr. | UNINA-9910139597703321 |
Akcoglu Mustafa A (Mustafa Agah), <1934->
![]() |
||
Hoboken, N.J., : Wiley-Interscience, c2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Analysis in vector spaces [[electronic resource] ] : a course in advanced calculus / / Mustafa A. Akcoglu, Paul F.A. Bartha, Dzung M. Ha |
Autore | Akcoglu Mustafa A (Mustafa Agah), <1934-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2009 |
Descrizione fisica | 1 online resource (480 p.) |
Disciplina |
512.52
512/.52 |
Altri autori (Persone) |
BarthaPaul F. A. <1964->
HaDzung Minh |
Soggetto topico |
Vector spaces
Functional analysis |
ISBN |
1-283-27395-0
9786613273956 1-118-16458-X 1-118-16459-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Analysis in Vector Spaces: A Course in Advanced Calculus; CONTENTS; Preface; PART I BACKGROUND MATERIAL; 1 Sets and Functions; 1.1 Sets in General; 1.2 Sets of Numbers; 1.3 Functions; 2 Real Numbers; 2.1 Review of the Order Relations; 2.2 Completeness of Real Numbers; 2.3 Sequences of Real Numbers; 2.4 Subsequences; 2.5 Series of Real Numbers; 2.6 Intervals and Connected Sets; 3 Vector Functions; 3.1 Vector Spaces: The Basics; 3.2 Bilinear Functions; 3.3 Multilinear Functions; 3.4 Inner Products; 3.5 Orthogonal Projections; 3.6 Spectral Theorem; PART II DIFFERENTIATION; 4 Normed Vector Spaces
4.1 Preliminaries4.2 Convergence in Normed Spaces; 4.3 Norms of Linear and Multilinear Transformations; 4.4 Continuity in Normed Spaces; 4.5 Topology of Normed Spaces; 5 Derivatives; 5.1 Functions of a Real Variable; 5.2 Differentiable Functions; 5.3 Existence of Derivatives; 5.4 Partial Derivatives; 5.5 Rules of Differentiation; 5.6 Differentiation of Products; 6 Diffeomorphisms and Manifolds; 6.1 The Inverse Function Theorem; 6.2 Graphs; 6.3 Manifolds in Parametric Representations; 6.4 Manifolds in Implicit Representations; 6.5 Differentiation on Manifolds; 7 Higher-Order Derivatives 7.1 Definitions7.2 Change of Order in Differentiation; 7.3 Sequences of Polynomials; 7.4 Local Extremal Values; PART III INTEGRATION; 8 Multiple Integrals; 8.1 Jordan Sets and Volume; 8.2 Integrals; 8.3 Images of Jordan Sets; 8.4 Change of Variables; 9 Integration on Manifolds; 9.1 Euclidean Volumes; 9.2 Integration on Manifolds; 9.3 Oriented Manifolds; 9.4 Integrals of Vector Fields; 9.5 Integrals of Tensor Fields; 9.6 Integration on Graphs; 10 Stokes' Theorem; 10.1 Basic Stokes' Theorem; 10.2 Flows; 10.3 Flux and Change of Volume in a Flow; 10.4 Exterior Derivatives 10.5 Regular and Almost Regular Sets10.6 Stokes' theorem on Manifolds; PART IV APPENDICES; Appendix A: Construction of the real numbers; A.1 Field and Order Axioms in Q; A.2 Equivalence Classes of Cauchy Sequences in Q; A.3 Completeness of R; Appendix B: Dimension of a vector space; B.1 Bases and linearly independent subsets; Appendix C: Determinants; C.1 Permutations; C.2 Determinants of Square Matrices; C.3 Determinant Functions; C.4 Determinant of a Linear Transformation; C.5 Determinants on Cartesian Products; C.6 Determinants in Euclidean Spaces; C.7 Trace of an Operator Appendix D: Partitions of unityD.1 Partitions of Unity; Index |
Record Nr. | UNINA-9910830147503321 |
Akcoglu Mustafa A (Mustafa Agah), <1934->
![]() |
||
Hoboken, N.J., : Wiley-Interscience, c2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Analysis in vector spaces : a course in advanced calculus / / Mustafa A. Akcoglu, Paul F.A. Bartha, Dzung M. Ha |
Autore | Akcoglu Mustafa A (Mustafa Agah), <1934-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2009 |
Descrizione fisica | 1 online resource (480 p.) |
Disciplina | 512/.52 |
Altri autori (Persone) |
BarthaPaul F. A. <1964->
HaDzung Minh |
Soggetto topico |
Vector spaces
Functional analysis |
ISBN |
1-283-27395-0
9786613273956 1-118-16458-X 1-118-16459-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Analysis in Vector Spaces: A Course in Advanced Calculus; CONTENTS; Preface; PART I BACKGROUND MATERIAL; 1 Sets and Functions; 1.1 Sets in General; 1.2 Sets of Numbers; 1.3 Functions; 2 Real Numbers; 2.1 Review of the Order Relations; 2.2 Completeness of Real Numbers; 2.3 Sequences of Real Numbers; 2.4 Subsequences; 2.5 Series of Real Numbers; 2.6 Intervals and Connected Sets; 3 Vector Functions; 3.1 Vector Spaces: The Basics; 3.2 Bilinear Functions; 3.3 Multilinear Functions; 3.4 Inner Products; 3.5 Orthogonal Projections; 3.6 Spectral Theorem; PART II DIFFERENTIATION; 4 Normed Vector Spaces
4.1 Preliminaries4.2 Convergence in Normed Spaces; 4.3 Norms of Linear and Multilinear Transformations; 4.4 Continuity in Normed Spaces; 4.5 Topology of Normed Spaces; 5 Derivatives; 5.1 Functions of a Real Variable; 5.2 Differentiable Functions; 5.3 Existence of Derivatives; 5.4 Partial Derivatives; 5.5 Rules of Differentiation; 5.6 Differentiation of Products; 6 Diffeomorphisms and Manifolds; 6.1 The Inverse Function Theorem; 6.2 Graphs; 6.3 Manifolds in Parametric Representations; 6.4 Manifolds in Implicit Representations; 6.5 Differentiation on Manifolds; 7 Higher-Order Derivatives 7.1 Definitions7.2 Change of Order in Differentiation; 7.3 Sequences of Polynomials; 7.4 Local Extremal Values; PART III INTEGRATION; 8 Multiple Integrals; 8.1 Jordan Sets and Volume; 8.2 Integrals; 8.3 Images of Jordan Sets; 8.4 Change of Variables; 9 Integration on Manifolds; 9.1 Euclidean Volumes; 9.2 Integration on Manifolds; 9.3 Oriented Manifolds; 9.4 Integrals of Vector Fields; 9.5 Integrals of Tensor Fields; 9.6 Integration on Graphs; 10 Stokes' Theorem; 10.1 Basic Stokes' Theorem; 10.2 Flows; 10.3 Flux and Change of Volume in a Flow; 10.4 Exterior Derivatives 10.5 Regular and Almost Regular Sets10.6 Stokes' theorem on Manifolds; PART IV APPENDICES; Appendix A: Construction of the real numbers; A.1 Field and Order Axioms in Q; A.2 Equivalence Classes of Cauchy Sequences in Q; A.3 Completeness of R; Appendix B: Dimension of a vector space; B.1 Bases and linearly independent subsets; Appendix C: Determinants; C.1 Permutations; C.2 Determinants of Square Matrices; C.3 Determinant Functions; C.4 Determinant of a Linear Transformation; C.5 Determinants on Cartesian Products; C.6 Determinants in Euclidean Spaces; C.7 Trace of an Operator Appendix D: Partitions of unityD.1 Partitions of Unity; Index |
Record Nr. | UNINA-9910876850403321 |
Akcoglu Mustafa A (Mustafa Agah), <1934->
![]() |
||
Hoboken, N.J., : Wiley-Interscience, c2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Banach-Hilbert spaces, vector measures and group representations / Tsoy-Wo Ma |
Autore | Ma, Tsoy-Wo |
Pubbl/distr/stampa | River Edge, N. J. : World Scientific, c2002 |
Descrizione fisica | xiv, 606 p. : ill. ; 24 cm |
Disciplina | 515.732 |
Soggetto topico |
Banach spaces
Hilbert space Vector spaces |
ISBN | 9812380388 |
Classificazione |
AMS 00A05
AMS 22-01 AMS 28B05 AMS 46-01 AMS 47A LC QA322.2.M28 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001610359707536 |
Ma, Tsoy-Wo
![]() |
||
River Edge, N. J. : World Scientific, c2002 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Convex analysis in general vector spaces [[electronic resource] /] / C Zălinescu |
Autore | Zalinescu C. <1952-> |
Pubbl/distr/stampa | River Edge, N.J. ; ; London, : World Scientific, c2002 |
Descrizione fisica | 1 online resource (xx, 367 p. ) |
Disciplina | 515/.8 |
Soggetto topico |
Convex functions
Convex sets Functional analysis Vector spaces |
Soggetto genere / forma | Electronic books. |
ISBN | 981-277-709-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ch. 1. Preliminary results on functional analysis. 1.1. Preliminary notions and results. 1.2. Closedness and interiority notions. 1.3. Open mapping theorems. 1.4. Variational principles. 1.5. Exercises. 1.6. Bibliographical notes -- ch. 2. Convex analysis in locally convex spaces. 2.1. Convex functions. 2.2. Semi-continuity of convex functions. 2.3. Conjugate functions. 2.4. The subdifferential of a convex function. 2.5. The general problem of convex programming. 2.6. Perturbed problems. 2.7. The fundamental duality formula. 2.8. Formulas for conjugates and e-subdifferentials, duality relations and optimality conditions. 2.9. Convex optimization with constraints. 2.10. A minimax theorem. 2.11. Exercises. 2.12. Bibliographical notes -- ch. 3. Some results and applications of convex analysis in normed spaces. 3.1. Further fundamental results in convex analysis. 3.2. Convexity and monotonicity of subdifferentials. 3.3. Some classes of functions of a real variable and differentiability of convex functions. 3.4. Well conditioned functions. 3.5. Uniformly convex and uniformly smooth convex functions. 3.6. Uniformly convex and uniformly smooth convex functions on bounded sets. 3.7. Applications to the geometry of normed spaces. 3.8. Applications to the best approximation problem. 3.9. Characterizations of convexity in terms of smoothness. 3.10. Weak sharp minima, well-behaved functions and global error bounds for convex inequalities. 3.11. Monotone multifunctions. 3.12. Exercises. 3.13. Bibliographical notes. |
Record Nr. | UNINA-9910451674103321 |
Zalinescu C. <1952->
![]() |
||
River Edge, N.J. ; ; London, : World Scientific, c2002 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Convex analysis in general vector spaces [[electronic resource] /] / C Zălinescu |
Autore | Zalinescu C. <1952-> |
Pubbl/distr/stampa | River Edge, N.J. ; ; London, : World Scientific, c2002 |
Descrizione fisica | 1 online resource (xx, 367 p. ) |
Disciplina | 515/.8 |
Soggetto topico |
Convex functions
Convex sets Functional analysis Vector spaces |
ISBN | 981-277-709-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ch. 1. Preliminary results on functional analysis. 1.1. Preliminary notions and results. 1.2. Closedness and interiority notions. 1.3. Open mapping theorems. 1.4. Variational principles. 1.5. Exercises. 1.6. Bibliographical notes -- ch. 2. Convex analysis in locally convex spaces. 2.1. Convex functions. 2.2. Semi-continuity of convex functions. 2.3. Conjugate functions. 2.4. The subdifferential of a convex function. 2.5. The general problem of convex programming. 2.6. Perturbed problems. 2.7. The fundamental duality formula. 2.8. Formulas for conjugates and e-subdifferentials, duality relations and optimality conditions. 2.9. Convex optimization with constraints. 2.10. A minimax theorem. 2.11. Exercises. 2.12. Bibliographical notes -- ch. 3. Some results and applications of convex analysis in normed spaces. 3.1. Further fundamental results in convex analysis. 3.2. Convexity and monotonicity of subdifferentials. 3.3. Some classes of functions of a real variable and differentiability of convex functions. 3.4. Well conditioned functions. 3.5. Uniformly convex and uniformly smooth convex functions. 3.6. Uniformly convex and uniformly smooth convex functions on bounded sets. 3.7. Applications to the geometry of normed spaces. 3.8. Applications to the best approximation problem. 3.9. Characterizations of convexity in terms of smoothness. 3.10. Weak sharp minima, well-behaved functions and global error bounds for convex inequalities. 3.11. Monotone multifunctions. 3.12. Exercises. 3.13. Bibliographical notes. |
Record Nr. | UNINA-9910778253603321 |
Zalinescu C. <1952->
![]() |
||
River Edge, N.J. ; ; London, : World Scientific, c2002 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Convex analysis in general vector spaces / C. Zalinescu |
Autore | Zalinescu, C. |
Pubbl/distr/stampa | [River Edge], N. J. : World Scientific, c2002 |
Descrizione fisica | xx, 367 p. ; 24 cm |
Disciplina | 515.8 |
Soggetto topico |
Convex functions
Convex sets Functional analysis Vector spaces |
ISBN | 9812380671 |
Classificazione |
AMS 49-02
LC QA331.5.Z34 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991002547169707536 |
Zalinescu, C.
![]() |
||
[River Edge], N. J. : World Scientific, c2002 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
The coordinate-free approach to Gauss-Markov estimation / Hilmar Drygas |
Autore | Drygas, Hilmar |
Pubbl/distr/stampa | Berlin ; New York : Springer-Verlag, 1970 |
Descrizione fisica | vii, 113 p. ; 26 cm. |
Disciplina | 519.598 |
Collana | Lecture notes in operations research and mathematical systems ; 40 |
Soggetto topico |
Estimation theory
Linear inference Regression analysis Vector spaces |
ISBN | 3540053263 |
Classificazione | AMS 62J |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000794289707536 |
Drygas, Hilmar
![]() |
||
Berlin ; New York : Springer-Verlag, 1970 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Espaces vectoriels, applications linéaires : L1, L2, classes préparatoires / / Jean-Jacques Colin et Jean-Marie Morvan |
Autore | Colin Jean-Jacques <1942-> |
Pubbl/distr/stampa | Toulouse, France : , : Cépaduès-Éditions, , 2011 |
Descrizione fisica | 1 online resource (ii, 140 pages) |
Disciplina | 512.52 |
Collana | Bien débuter en mathématiques |
Soggetto topico | Vector spaces |
Soggetto genere / forma | Electronic books. |
ISBN | 2-36493-330-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | fre |
Record Nr. | UNINA-9910462500303321 |
Colin Jean-Jacques <1942->
![]() |
||
Toulouse, France : , : Cépaduès-Éditions, , 2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Espaces vectoriels, applications linéaires : L1, L2, classes préparatoires / / Jean-Jacques Colin et Jean-Marie Morvan |
Autore | Colin Jean-Jacques <1942-> |
Pubbl/distr/stampa | Toulouse, France : , : Cépaduès-Éditions, , 2011 |
Descrizione fisica | 1 online resource (ii, 140 pages) |
Disciplina | 512.52 |
Collana | Bien débuter en mathématiques |
Soggetto topico | Vector spaces |
ISBN | 2-36493-330-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | fre |
Record Nr. | UNINA-9910790310003321 |
Colin Jean-Jacques <1942->
![]() |
||
Toulouse, France : , : Cépaduès-Éditions, , 2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|